
SRICHAITANYA NATION'S 1STCHOICE FOR IIT-JEE SUCCESS

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY

JEE MAIN (JAN) 2025 – SHIFT 1 28-01-2025

Sri Chaitanya ACADEMY

5. A proton of mass m_p has same energy as that of photon of specific wavelength. If the proton is moving at non-relativistic speed, then ratio of de Broglie wavelength of the proton to the wavelength of photon is

a) $\frac{1}{c}\sqrt{\frac{2E}{m_p}}$ b) $\frac{1}{c}\sqrt{\frac{E}{2m_p}}$ c) $\frac{1}{c}\sqrt{\frac{E}{m_p}}$ d) $\frac{1}{2c}\sqrt{\frac{E}{m_p}}$

Ans: (b)

6. Find center of mass of Rectangular Plate of mass density

a)
$$\left(\frac{2a}{3}, \frac{b}{2}\right)$$
 b) $\left(\frac{a}{3}, \frac{2b}{3}\right)$ c) $\left(\frac{a}{2}, \frac{b}{3}\right)$ d) $\left(\frac{a}{3}, \frac{b}{2}\right)$

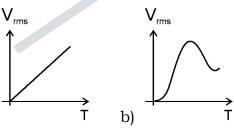
Ans: (a)

7. A thin prism P_1 with angle 4° made of glass having refractive index 1.54, is combine with another thin prism P_2 made of glass having refractive index 1.72 to get dispersion without deviation. The angle of the prism P_2 in degrees is

c) 3

a) 4

a)


JEE ADVANCED

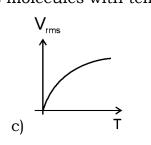
Ans: (c)

8.

Ans: (c)

The variation of RMS velocity of gas molecules with temperature.

VAVILALA CHIDVILAS

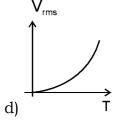

CLASSROOM STUDENT

FROM GRADE VI-XII

H.T.No. 236165088

NEET

b) 16/3

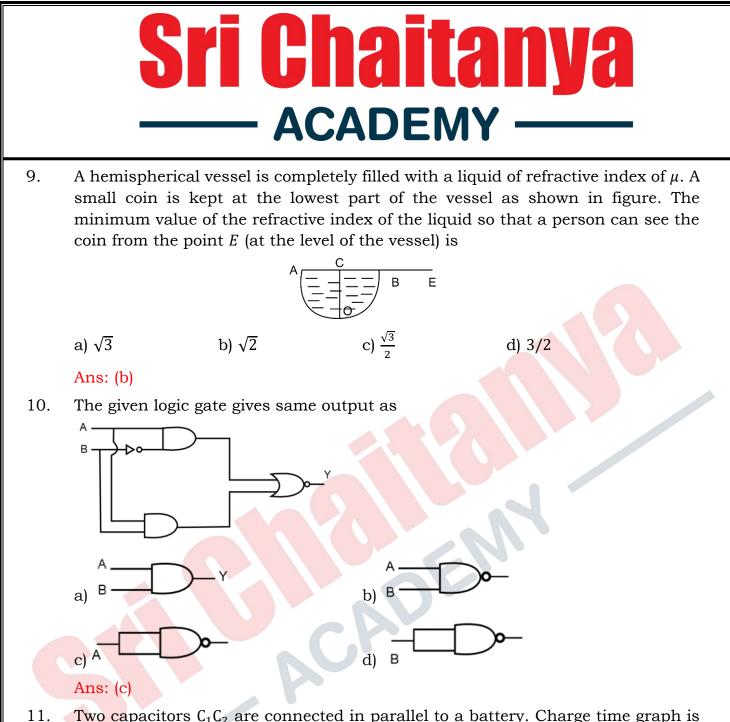


B VARUN CHAKRAVARTHI

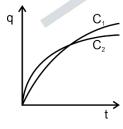
CLASSROOM STUDENT

FROM GRADE VI-XII

H.T.No. 1205120175



d) 1.5



S VENKAT KOUNDINYA H.T.No. 230310124339

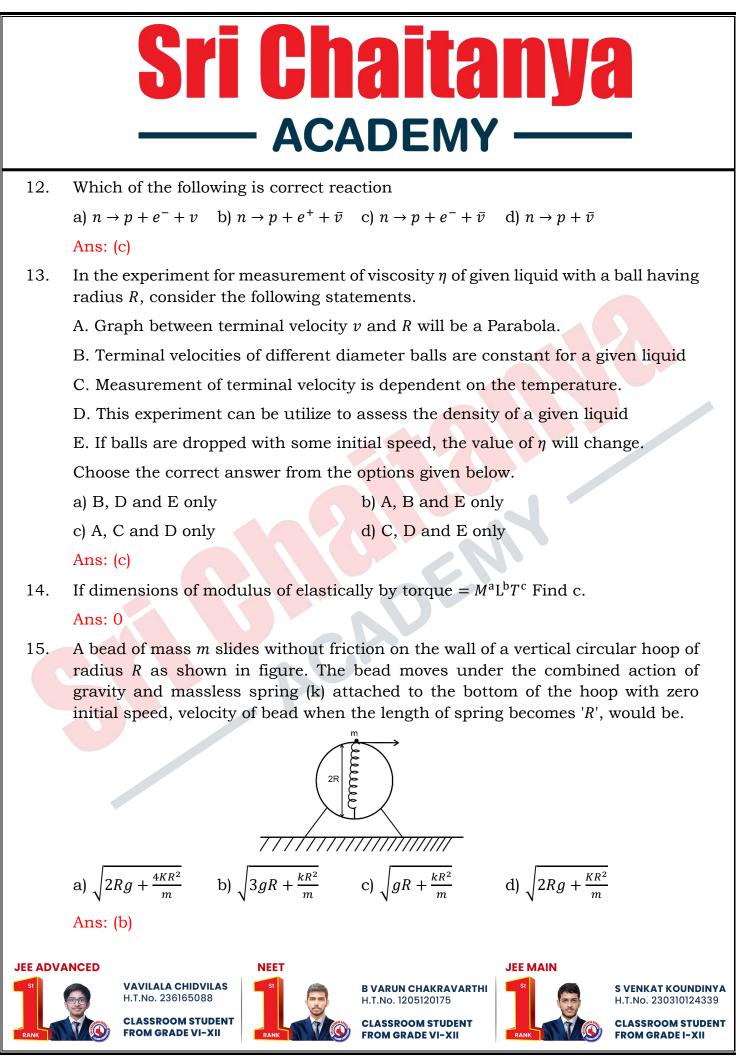
11. Two capacitors C_1C_2 are connected in parallel to a battery. Charge time graph is shown below for the two capacitors. The energy store with them in steady state are u_1 and u_2 respectively. Which of the given statement is correct

a) $C_1 > C_2, u_1 < u_2$ b) $C_1 > C_2, u_1 > u_2$ c) $C_2 > C_1, u_2 > u_1$ d) $C_2 > C_1, u_2 < u_1$

Ans: (b)

H.T.No. 236165088 CLASSROOM STUDENT FROM GRADE VI-XII

VAVILALA CHIDVILAS



B VARUN CHAKRAVARTHI H.T.No. 1205120175 CLASSROOM STUDENT

FROM GRADE VI-XII

S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya — ACADEMY

CHEMISTRY

CHEMISTRY								
1.	The product A and B in the following reactions, respectively $A \stackrel{AgNO_2}{\longleftarrow} CH_3 CH_2 CH_2 Br_2 \stackrel{AgCN}{\rightarrow} B$							
	a) $CH_3 - CH_2 - CH_2 - ONO, CH_3 - CH_2 - CH_2 - CN$							
	b) $CH_3 - CH_2 - CH_2 - NO_2$, $CH_3 - CH_2 - CH_2 - NC$							
	c) $CH_3 - CH_2 \rightarrow +CH_2 - NO_2$, $CH_3 - CH_2 - CH_2CN$							
	d) $CH_3 - CH_2 - C$	$H_2 - ONO, CH_3 - CH_2 -$	$- CH_2 - NC$					
	Ans: (b)							
2.	Consider the following element in In, TI, Al, and Pb. The most stable oxidation states of elements with highest and lowest first ionization enthalpies, respectively are							
	a) +4 and +1	b) +2 and +3	c) +4 and +3	d) +1 and +4				
	Ans: (b)							
3.	The incorrect decreasing order of atomic radii is,							
	a) Si > P > Cl > F		b) $Mg > Al > C > C$)				
	c) $Al > B > N > F$		d) Be > Mg > Al >	Si				
	Ans: (d)							
4. The molecules having square pyramidal geometry are								
	a) SbF ₅ & PCl ₅		b) BrF ₅ & XeOF ₄					
	c) BrF ₅ & PCl ₅		d) SbF ₅ & XeF ₄					
	Ans: (b)							
5.	A weak acid HA has degree of dissociation x. Which options gives the correct expression of $(pH - pK_a)$?							
	a) 0	b) $(\log(1+2x))$	c) $\log\left(\frac{x}{1-x}\right)$	d) $\log\left(\frac{1-x}{x}\right)$				
	Ans: (c)							
JEE ADV	ANCED	NEET		JEE MAIN				
St	WAVILALA CHIE H.T.No. 2361650	and the second se	B VARUN CHAKRAVARTHI H.T.No. 1205120175	St	S VENKAT KOUNDINYA H.T.No. 230310124339			
RANK	CLASSROOM S FROM GRADE V		CLASSROOM STUDENT FROM GRADE VI-XII	RANK	CLASSROOM STUDENT FROM GRADE I-XII			
			5					

Sri Chaitanya _____ACADEMY

- 6. Both acetaldehyde and acetone (individually) undergo which of the following reactions,
 - A) Iodoform Reaction
 B) Cannizzaro Reaction
 C) Aldol condensation
 D) Tollen's test
 E) Clemmesen Reduction
 a) A, C & E only
 b) A, D & E only
 c) A, B, C, D & E
 d) A & C only
 Ans: (b)
- 7. What is the freezing point depression constant of a solvent 50g of which contain 1g of non-volatile solute (M.W:256g/mol) and depression in freezing point is 0.4K?

a) $0.372 \text{K Kg mol}^{-1}$

c) 4.213K Kg mol⁻¹

b) 4.213K Kg mol⁻¹

d) 5.12K Kg mol⁻¹

Ans: (d)

- 8. Ice and water are placed in a closed container at a pressure at 1 atm and temperature 273.15 K. If the pressure of the container increases 2 times and the temperature is kept constant, then identify the correct observation from the following
 - a) The amount of ice decreases
 - b) Volume of system increases
 - c) Liquid phase disappear completely
 - d) Solid phase (ice) disappear completely

b) 2, 3

Ans: (d)

9. Which of the following set of quantum numbers have same energy?

(1) n = 2, l = 2, m = +1(2) n = 2, l = 1, m = -1

(2)
$$n = 2$$
, $l = 1$, $m = -1$
(3) $n = 3$, $l = 2$, $m = 0$

(4) n = 3, l = 2, m = 1

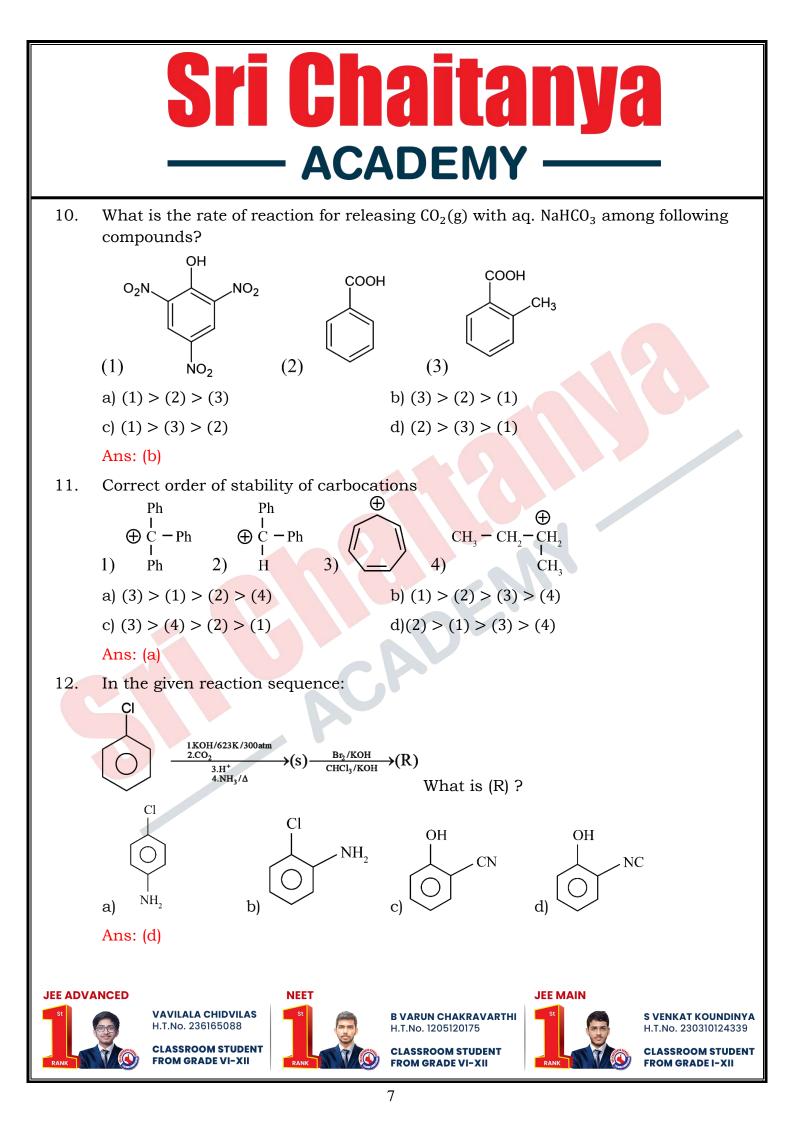
a) 1, 2

c) 3, 4

d) 1, 4

Ans: (c)

JEE ADVANCED



B VARUN CHAKRAVARTHI H.T.No. 1205120175 CLASSROOM STUDENT FROM GRADE VI-XII

S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya — ACADEMY —								
13.	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O_{(g)}\Delta H_f = -248 \text{ kJ/mol. Bond energy of } H_2 \text{ and } O_2 \text{ are } 222 \text{ \&}$							
	250 kJ/mol respectively. What is bond energy of $0 - H$ bond?							
	a) 720	b) 645	Cj	471 d) 567				
14.	Ans: (c) Which gives borax bead test violet?							
11.	a) Ti^{+3}	b) Ni ⁺²		Mn^{+2} d) V^{+3}				
	Ans: (c)	,						
15.	70% by mass solution of HNO_3 is taken having density 1.41gm/ml. Calculate molarity (Rounded off to nearest integer)							
	a) 16 b) 24		c)	12 d) 30				
	Ans: (a)							
16.	Statem	nent-1: Glucose pentaacet	ate giv	ve 2-4DNP test				
	Statement-2 : Starch on heating with conc.sulphuric acid at 100°C and 2-3 atm gives glucose.							
	a) Both	Statements are true	b)	Both Statements are false				
	c) State	ement-1 is true and Stater	nent-2	2 is false				
	d) State	ement-1 is false and State	ment-	2 is true				
	Ans: (d							
17.	Match	the following column and	choos	e the correct option.				
		Column-I		Column-II				
	(A)	$\mathrm{H}_2\mathrm{O}_2 \to \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	(P)	Combustion reaction				
	(B)	$NaH \rightarrow Na + H_2$	(Q)	Disproportionation				
	(C)	$\mathrm{CH}_4 + \mathrm{O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$	(R)	Decomposition reaction				
	(D)	$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$	(S)	Displacement reaction				
a) $A - (Q), B - (P), C - (R), D - (S)$ b) $A - (R), B - (Q), C - (S), D - (P)$								
c) $A - (Q), B - (R), C - (P), D - (S)$ d) $A - (R), B - (Q), C - (P), D - (S)$								
Ans: (c) JEE ADVANCED NEET JEE MAIN								

ST VAN H.T. CLA

VAVILALA CHIDVILAS H.T.No. 236165088 CLASSROOM STUDENT FROM GRADE VI-XII

B VARUN CHAKRAVARTHI H.T.No. 1205120175 CLASSROOM STUDENT FROM GRADE VI-XII

S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya — ACADEMY The number of lone pairs in the most stable structure of ClF₃ are n, then 18. compound that doesn't have the same number of unpaired electrons is ? c) Ti⁺⁴ a) Ni⁺² b) V⁺³ d) Ti⁺² Ans: (c) 19. A compound contains 14.4% of carbon, 1.8% of hydrogen and 64.46% of Chlorine by mass. The empirical formula of the compound (Cl - 35.5, C - 12, 0 - 16, H - 1)b) C₂H₄Cl d) CHCl₃ a) CH₃Cl c) CH_2Cl_2 Ans: (c) 20. Given below are two statements: Statement-I $N - CH_2 - CH_2 - CI -$ (A) Et、 \sim CH – CH₂ – CH₂ – Cl – Et' **(B)** (A) give hydrolysis faster than (B). **Statement-II:** Compound (A) first combined itself to give intramolecular bond. In the light of the above statements, choose the most appropriate answer from the options given below: (a) Both Statement I and Statement II are incorrect (b) Statement I is correct but Statement II is incorrect (c) Both Statement I and Statement II are correct (d) Statement I is incorrect but Statement II is correct Ans: (c) 21. Which of the following Oxidation reaction reactions are carried out by both $K_2Cr_2O_7$ and $KMnO_4$ in Acidic Medium b) $S^{2-} \rightarrow S$ c) $I^- \rightarrow IO_3^-$ d) $S_2O_3^{2-} \rightarrow SO_4^{2-}$ a) $I^- \rightarrow I_2$ Ans: (a) JEE ADVANCED NEET **JEE MAIN** VAVILALA CHIDVILAS

B VARUN CHAKRAVARTHI H.T.No. 1205120175 CLASSROOM STUDENT FROM GRADE VI-XII

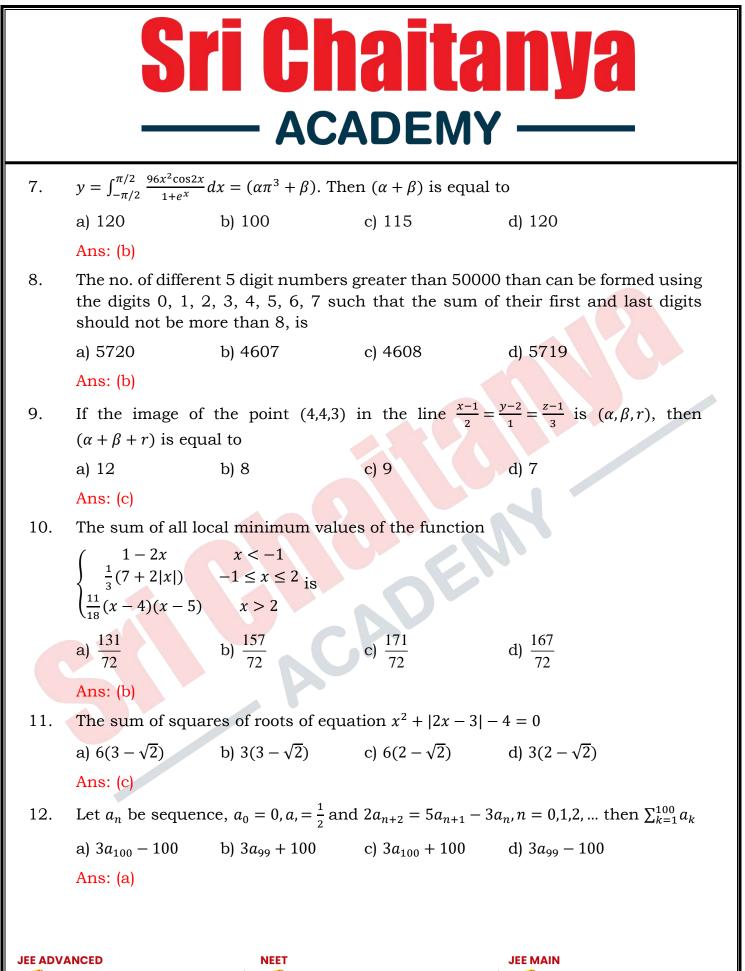
S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya ACADEMY

MATHEMATICS

1.	If $f(x) = \frac{2^x}{2^x + \sqrt{2}}$, $x \in R$, then $\sum_{k=1}^{81} f\left(\frac{k}{82}\right)$ is equal to								
	a) 81√2	b) 82	c) $\frac{81}{2}$	d) 41					
	Ans: (c)								
2.	2. $z_1 = \sqrt{3} + 2\sqrt{2}i \& \sqrt{3} Z_1 = Z_2 $ and $\arg(z_2) = \arg(z_1) + \frac{\pi}{6}$ then area of triang								
	vertices z_1, z_2 and origin.								
	a) $\frac{11\sqrt{3}}{4}$	b) $\frac{3\sqrt{2}}{5}$	c) $\frac{2\sqrt{3}}{5}$	d) $\frac{2\sqrt{5}}{7}$					
	Ans: (a)								
3.	$\cos\left(\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{33}{65}\right)$ is equal to:								
	a) 0	b) 1	c) $\frac{32}{65}$	d) $\frac{33}{65}$					
	Ans: (a)								
4.	Area of region $\{(x, y): 0 \le y \le 2 x + 1, 0 \le y \le x^2 + 1, x \le 3\}$								
	a) $\frac{17}{3}$	b) $\frac{32}{3}$	c) $\frac{64}{3}$	d) $\frac{80}{3}$					
	Ans: (c)								
5.	The relation $R = \{(x, y) \mid x, y \in z, x + y = \text{even}\}$ then R is								
	a) Equivalence								
	b) Reflexive & T	ransitive but-not	Symmetric						
	c) Symmetric & Transitive but not reflexive								
	d) Reflexive & s	ymmetric but not	transitive						
	Ans: (a)								
6.	$\int_0^x tf(t)dt = x^2 f$	(x), f(2) = 3, f(6)	=?						
	a) 3	b) 0	c) 2	d) 1					
	Ans: (d)								
JEE ADVANCED NEET JEE MAIN									
St	VAVILALA CHI H.T.No. 236165	DVILAS		THI 💶 🙈 S VENKAT KOUNDINYA					
	H.T.NO. 230103		H.T.No. 1205120175	H.T.No. 230310124339					

H.T.No. 230310124339


CLASSROOM STUDENT FROM GRADE I-XII

CLASSROOM STUDENT

FROM GRADE VI-XII

CLASSROOM STUDENT

FROM GRADE VI-XII

ST RANK

VAVILALA CHIDVILAS

B VARUN CHAKRAVARTHI H.T.No. 1205120175 CLASSROOM STUDENT FROM GRADE VI-XII

S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya — ACADEMY

13. Three defective oranges are accidently mixed with Seven good ones & on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If x denote the number of defective oranges, then the variance of x is.

a) 4/75 b) 14/75 c) 28/75 d) 26/75

Ans: (c)

14. Let ${}^{n}C_{r-1} = 28$, ${}^{n}c_{r} = 56$ and ${}^{n}c_{r+1} = 70$, let A(4 cost, 4 sint), B(2sin *t*, -2cost) and $C(3r - n, r^{2} - n - 1)$ be the vertices of a triangles ABC, where t is a parameter. If $(3x - 1)^{2} + (3y)^{2} = \alpha$, is the locus of the centroid of triangle ABC, then α equates.

15. Let $f: R \to R$ be a function defined by $(x) = (2+3a)x^2 + \left(\frac{a+2}{a-1}\right)x + b$, $a \neq 1$, if $f(x+y) = f(x) + f(y) + 1 - \frac{2}{7}xy$, then the value of $28\sum_{i=1}^{5} |f(i)|$ is.

Ans: (a)

16. Let ABCD be a trapezium whose vertices lie on parabola $y^2 = 4x$. let the sides the AD and BC of the trapezium be Parallel to y -axis If the diagonal AC is of length $\frac{25}{4}$ and it Passes through the Point (1,0) then the area of *ABCD* is


c) $\frac{75}{8}$

a) $\frac{125}{8}$

Ans: (d)

- 17. Let A(x, y, z) be point in xy plane, which is equidistant from three Points (0,3,2), (2,0,3) and (0,0,1). let B(1,4,-1) and C(2,0,-2). Then among the statements. S₁ = △ ABC is an isosceles right angle triangle, and S₂ = the area of △ ABC is ^{9√2}/₂, a) Only S₁ is true b) Both are false c) Only S₂ is true d) Both are true Ans: (a)
- 18. Let T_r be the r^{th} term of an A.P. If for some $m, T_m = \frac{1}{25}, T_{25} = \frac{1}{20}$, and $20\sum_{r=1}^{25} T_r = 13$, Then $5m\sum_{r=m}^{2m} T_r$ is

c) 142

Ans: (d)

b) $\frac{25}{2}$

d) 126

d) $\frac{75}{4}$

S VENKAT KOUNDINYA H.T.No. 230310124339

Sri Chaitanya — ACADEMY —

19. Two numbers, k_1 and k_2 are randomly chosen from the set of natural numbers. Then, the probability that the value of $i^{k_1} + i^{k_2}$, $(i = \sqrt{-1})$ is non - zero, equal to

a) $\frac{2}{8}$ b) $\frac{1}{4}$ c) $\frac{3}{4}$ d) $\frac{1}{2}$

Ans: (c)

20. Let the equation of the circle, which touches x-axis at the point (a, 0), a > 0 cuts off an intercept of length 'b' on y-axis be $x^2 + y^2 - \alpha x + \beta y + r = 0$. If the circle lies below x-axis, then the ordered pair $(2a, b^2)$ is equal to.

```
a) (r, \beta^2 + 4\alpha) b) (\alpha, \beta^2 - 4r) c) (r, \beta^2 - 4\alpha) d) (\alpha, \beta^2 + 4r)
Ans: (b)
```


Telegram: Contact @InfinityLearnJEE

JEE ADVANCED

ST CONTRACTOR

H.T.No. 236165088 CLASSROOM STUDENT FROM GRADE VI-XII

VAVILALA CHIDVILAS

B VARUN CHAKRAVARTHI H.T.No. 1205120175

CLASSROOM STUDENT FROM GRADE VI-XII

S VENKAT KOUNDINYA H.T.No. 230310124339

ALL INDIA RANK

RANK

JEE MAIN 2024

K C BASAVA REDDY APPL.No. 240310618179*

POWE ORDIN

PROUDLY ACHIEVED **22 RANKS IN TOP 1000**

SEIZES **4 RANKS** IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 **ALL INDIA OPEN CATEGORY**

SCAN THE QR CODE