

SRICHAITANYA NATION'S 1STCHOICE FOR IIT-JEE SUCCESS

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY

JEE MAIN (JAN) 2025 – SHIFT 1 22–01–2025

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 22-Jan-2025 Shift-01

Max Marks: 100

🖻 Sri Chaitanya IIT Academy., India.

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON Central Office – Madhapur – Hyderabad

2025_Jee-Main_22-Jan-2025_Shift-01

MATHEMATICS

(SINGLE CORRECT ANSWER TYPE)

4)21

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. **Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.**

01. Let the triangle PQR be the image of the triangle with vertices (1,3), (3,1), (2,4) in the line x + 2y = 2. If the centroid of ΔPQR is the point (α, β) , then $15(\alpha - \beta)$ is equal to ____.

1) 24 2) 19 3) 22 Key: 3

Sol: Centroid of vertices (1,3), (3,1), (2,4) is $\left(\frac{1+3+2}{3}, \frac{3+1+4}{3}\right) = \left(2, \frac{8}{3}\right)$

Image of (2,8/3) wrt the line x+2y=2 is (α,β)

$$\frac{h-2}{1} = \frac{k-\frac{8}{3}}{2} = \frac{-2\left(2+2\left(\frac{8}{3}\right)-2\right)}{4+1} \Rightarrow \frac{h-2}{1} = \frac{k-\frac{8}{3}}{2} = \frac{-32}{15}$$
$$h-2 = -\frac{32}{15} \Rightarrow h = \frac{-2}{15} \text{ and } \frac{k-\frac{8}{3}}{2} = -\frac{32}{15} \Rightarrow k = -\frac{24}{15}$$
$$\therefore 15(\alpha-\beta) = 15\left[\left(\frac{-2}{15}\right)-\left(\frac{-24}{15}\right)\right] = 22$$

02. From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter M, is

Sol:

$$\underbrace{A, B, C, D, \dots, M}_{12 \text{ Letters}} \underbrace{N, O, P, \dots, X}_{13 \text{ Letters}}, Y, Z$$
We should select 2. We should select 2.

$$\underbrace{:}^{12}C_2 \times 1 \dots \dots M \dots \dots ^{13}C_2 \times 1$$
Arrangement in Alphabetical Order

$$Theways = {}^{12}C_2 \times {}^{13}C_2 = \frac{12(11)}{2} \times \frac{(13)12}{2} = 5148$$

<u> Sri Chaitan</u>ya IIT Academy., India 2025 Jee-Main 22-Jan-2025 Shift-01 Using the principle values of the inverse trigonometric functions, the sum of maximum 03. and minimum values of $16\left(\left(\sec^{-1}x\right)^2 + \left(\csc^{-1}x\right)^2\right)$ is : 1) $31\pi^2$ 2) $18\pi^2$ 3) $22\pi^2$ 4) $24\pi^2$ Key: 3 Sol: $Sec^{-1}x = a \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ $\cos ec^{-1}x = \frac{\pi}{2} - a$ $16\left[\left(\sec^{-1}x\right)^{2} + \left(\csc^{-1}x\right)^{2}\right] = 16\left[a^{2} + \left(\frac{\pi}{2} - a\right)^{2}\right] = 16\left[2a^{2} - \pi a + \frac{\pi^{2}}{4}\right]$ $\max]_{a=\pi} = 16 \left[2\pi^2 - \pi^2 + \frac{\pi^2}{4} \right] = 20\pi^2 \qquad \min]_{a=\pi/4} = 16 \left[\frac{2\pi^2}{16} - \frac{\pi^2}{4} + \frac{\pi^2}{4} \right] = 2\pi^2$ \therefore Sum = $22\pi^2$ Let for $f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$, $I_1 = \int_{0}^{\pi/4} f(x) dx$ and $I_2 = \int_{0}^{\pi/4} x \cdot f(x) dx$, then 04. $7I_1 + 12I_2$ is equal to 3) 2 1) π 2) 1 4) 2π Key: 2 $f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x$ Sol: $f(x) = 7(\tan^8 x + \tan^6 x) - 3(\tan^4 x + \tan^2 x) = 7(\tan^6 x \sec^2 x) - 3(\tan^2 x \sec^2 x)$ $I_1 = \int_{-\pi/4}^{\pi/4} f(x)dx = 7 \int_{-\pi/4}^{\pi/4} \tan^6 x \sec^2 x.dx - 3 \int_{-\pi/4}^{\pi/4} \tan^2 x \sec^2 x.dx$ $I_1 = 7 \left[\frac{\tan^7 x}{7} \right]^{2/4} - 3 \left[\frac{\tan^3 x}{3} \right]^{2/4} = 7 \left(\frac{1}{7} - 0 \right) - 3 \left(\frac{1}{3} - 0 \right) = 0$ $I_2 = \left[x \left(\tan^7 x - \tan^3 x \right) \right]_0^{\pi/4} - \int_0^{\pi/4} \left(\tan^7 x - \tan^3 x \right) dx$ $I_2 = 0 - \int_{-\infty}^{\pi/4} \tan^3 x (\tan^2 x - 1) (\tan^2 x + 1) dx$ Let $\tan x = t \Rightarrow \sec^2 x.dx = dt$ $I_2 = -\int_{2}^{1} t^3 (t^2 - 1) dt = -\left| \frac{t^6}{6} - \frac{t^4}{4} \right|_{1}^{1} = \frac{1}{12} \Longrightarrow 12I_2 = 1$ $\therefore 7I_1 + 12I_2 = 0 + 1 = 1$ Let $f: R \to R$ be a twice differentiable function such that f(x+y) = f(x)f(y) for all $x, y \in R$. 05. If f'(0) = 4a and f satisfies f''(x) - 3af'(x) - f(x) = 0, a > 0, then the area of the region $R = \{(x, y) \mid 0 \le y \le f(ax), 0 \le x \le 2\}$ is 1) $e^2 + 1$ 2) $e^4 - 1$ 3) $e^4 + 1$ 4) $e^2 - 1$ Key: 4

2025 Jee-Main 22-Jan-2025 Shift-01

<u> Sri Chaitanya IIT Academy., India.</u>

Sol: $f(x) = p^x \Rightarrow f'(x) = p^x \log p$ $f'(0) = p^0 \log p = 4a \Longrightarrow p = e^{4a}$ $f(x) = e^{4ax}$ f''(x) - 3af'(x) - f(x) = 0 $16a^{2}e^{4ax} - 12a^{2}e^{4ax} - e^{4ax} = 0 \Longrightarrow 4a^{2} - 1 = 0 \Longrightarrow a = \frac{1}{2}$ $f(x) = e^{2x}$ $0 \le y \le f(1/2) = e^x$. $R.A = \int_{0}^{2} e^{x} dx = e^{2} - e^{0} = e^{2} - 1$ $\mathbf{x} = \mathbf{0}$ $\mathbf{x} = 2$ $f(ax) = e^{x}$ Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $B = \{m \mid n : m, n \in A, m < n \text{ and } gcd(m, n) = 1\}$. then n(B) is equal to 06. 1) 37 2) 31 3) 36 4) 29 Key: 2 Sol: $m = 1, n = 2, 3, \dots, 10 \rightarrow 9$ $m = 2, n = 3, 5, 7, 9 \rightarrow 4$ $m = 3, n = 4, 5, 7, 8, 10 \rightarrow 5$ $m = 4, n = 5, 7, 9 \rightarrow 3$ $m = 5, n = 6, 7, 8, 9 \rightarrow 4$ $m = 6, n = 7 \rightarrow 1$ $m = 7, n = 8, 9, 10 \rightarrow 3$ m = 8, n = 9 $\rightarrow 1$ m = 9, n = 10 $\rightarrow 1$ 31 The area of the region, inside the circle $(x-2\sqrt{3})^2 + y^2 = 12$ and outside the parabola 07. $v^2 = 2\sqrt{3}x$ is 2) $3\pi + 8$ 1) $6\pi - 16$ 3) $3\pi - 8$ 4) $6\pi - 8$ Key: 1 Sol: Area = $2\left[\frac{1}{4}\pi\left(2\sqrt{3}\right)^2 - \left(\int_{0}^{2\sqrt{3}}\sqrt{2\sqrt{3}}\times\sqrt{x}.dx\right)\right]$

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 22-Jan-2025 Shift-01

Let x = x(y) be the solution of the differential equation $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$. If x(1) = 1, then 10. $x\left(\frac{1}{2}\right)$ is 2) $\frac{3}{2} + e$ 3) 3*-e* 4) $\frac{1}{2} + e$ 1) 3+eKey: 3 Sol: $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0 \Rightarrow \frac{dx}{dy} + x \left(\frac{1}{y^2}\right) = \frac{1}{y^3}$ $IF = e^{\int \frac{1}{y^2} dy} = e^{\frac{1}{y} - 1}$ $xe^{\frac{-1}{y}} = \int e^{\frac{-1}{y}} \left(\frac{1}{y}\right) \left(\frac{1}{y^{2}}dy\right) = -\int e^{z}(z) dz = -\left[ze^{z} - e^{z}\right] + c$ $\Rightarrow xe^{\frac{-1}{y}} = -e^{z}[z-1] + c = -e^{\frac{-1}{y}}\left[\frac{-1}{y} - 1\right] + c$ $\Rightarrow x = \left(\frac{1}{\nu} + 1\right) + ce^{\frac{1}{\nu}} \quad \because x(1) = 1 \Rightarrow 1 + 2 + ce \Rightarrow c = \frac{-1}{e}$ $x = \left(\frac{1}{y} + 1\right) + e^{\frac{1}{y} - 1}$ $y = \frac{1}{2} \Rightarrow \frac{1}{v} = 2$ $x = (2+1) - e^{2-1} = 3 - e$ Let the foci of a hyperbola be (1, 14) and (1, -12). If it passes through the point (1,6), then 11. the length of its latus-rectum is: 2) $\frac{25}{6}$ 3) $\frac{288}{5}$ 4) $\frac{24}{5}$ 1) $\frac{145}{5}$ Key: 3 $2a = \left|\sqrt{(1-1)^2 + (14-6)^2} - \sqrt{(1-1)^2 + (-12-6)^2}\right| \Longrightarrow 2a = |8-18| \Longrightarrow a = 5$ Sol: $2ae = \sqrt{(1-1)^2 + (14 - (-12))^2} = 26 \implies e = \frac{26}{10} = \frac{\sqrt{a^2 + b^2}}{5}$ $\sqrt{25+b^2} = 13 \Longrightarrow b = 12$ length of latus rectum = $\frac{2b^2}{c} = \frac{2(144)}{5} = \frac{288}{5}$ Let z_1, z_2 and z_3 be three complex numbers on the circle |z| = 1 with $\arg(z_1) = \frac{-\pi}{4}$, $\arg(z_2) = 0$ 12. and $\arg(z_3) = \frac{\pi}{4}$. If $\left|z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}\right|^2 = \alpha + \beta\sqrt{2}$, $\alpha, \beta \in \mathbb{Z}$, then the value of $\alpha^2 + \beta^2$ is 1) 29 2) 41 4)243) 31 Key: 1

🧟 Sri (Chaitanya IIT Academy., India.	2025 Jee-Main 22-Jan-2025 Shift-01
Sol:	$ z = 1$, $\arg(z_1) = \frac{-\pi}{4}$, $\arg(z_1) = \frac{-\pi}{4}$, $\arg(z_3) = \frac{\pi}{4}$	
	$\left z_{1}\overline{z_{2}}+z_{2}\overline{z_{3}}+z_{3}\overline{z_{1}}\right ^{2} = \left \left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)\right ^{2}$	2^{2}
	$= \left 2 \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right) + \left(0 + \frac{2i}{2} \right) \right ^2 = \left \sqrt{2} - i\sqrt{2} + i \right ^2 = \left \sqrt{2} + i \left(1 - \sqrt{2} + i \right)^2 \right ^2$	$) ^{2}$
	$=2+(1-\sqrt{2})^2=5-2\sqrt{2}=\alpha+\beta\sqrt{2}$	
	$\therefore \alpha^2 + \beta^2 = (5)^2 + (-2)^2 = 29$	
13.	Let a_1, a_2, a_3, \dots be a GP of increasing positive terms a_6 is	if $a_1 a_5 = 28$ and $a_2 + a_4 = 29$ then
Key:	1) 526 2) 812 3) 628 4	4) 784
Sol:	r>1	
	$a_1 a_5 = 28 \Longrightarrow a_1 \left(a_1 r^4 \right) = 28 \Longrightarrow a_1^2 r^4 = 28 \Longrightarrow a_1 r^2 = 2\sqrt{7}$	
	$a_2 + a_4 = 29 \Longrightarrow a_1 r + a_1 r^3 = 29 \Longrightarrow a_1 r (1 + r^2) = 29$	
	$a_1 r = a_2 = 28, \ a_2 = 1 = a_1 r$	
	$a_6 = a_1 r^5 = \frac{1}{\sqrt{28}} \left(\sqrt{28}\right)^5 = 784$	
14.	A coin is tossed three times. Let X denote the number	of times a tail follows a head. If
	μ and σ^2 denote the mean and variance of X, then the	e value of $64(\mu + \sigma^2)$ is
	1) 48 2) 64 3) 32	4) 51
Key:		
501.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{8} \frac{1}{8} \frac{1}$	
	$\mu = \sum_{i} x_{i} P(X = x_{i}) = \frac{4}{8} = \frac{1}{2}$	
	$\sigma^{2} = \sum_{i} \left(x_{i}^{2} P(X = x_{i}) \right) - \left(\mu^{2} \right) = 0 + \frac{1}{8} + 0 + \frac{1}{8} + \frac{1}{8} - \frac{1}{4} = \frac{1}{4}$	
	$\therefore 64(\mu + \sigma^2) = 64\left(\frac{1}{2} + \frac{1}{4}\right) = 48$	

🧟 Sri (Chaitanya IIT Academy., India.		2025 Jee-Main 22-Jan-2025 Shift-01		
15.	Two balls are selected at rat	ndom one by one without re	placement from a bag containing		
	4 white and 6 black balls. If the probability that the first selected ball is black, given that				
	the second selected ball is a	llso black, is m/n, where gcd	(m,n) = 1, then $m + n$ is equal to		
	1) 14 2) 11	3) 13	4) 4		
Key:	1				
Sol:	by Baye's Theorem				
	$P\left(\frac{1 \text{ st is black}}{2 \text{ nd is black}}\right) = \frac{\frac{6}{10} \times \frac{6}{9}}{\left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{4}{10} \times \frac{6}{9}\right)}$	$\frac{5}{9} = \frac{5}{9} = \frac{1}{9} = \frac{1}{9} = \frac{1}{10}$			
	$\therefore m+n=5+9=14$				
16.	A circle C of radius 2 lies in	n the second quadrant and to	ouches both the coordinate axes.		
	Let r be the radius of a circl	le that has centre at the point	t $(2, 5)$ and intersects the circle C		
	at exactly two points. If the	set of all possible values of	r is the interval (α, β) , then		
	$3\beta - 2\alpha$ is equal to				
	1) 10 2) 12	3) 15	4) 14		
Key:	3				
Sol:	Centre is $C_1(-2, 2)$				
	Radius $r_1 = 2$				
	$C_2(2, 5)$ $r_2 = r$				
	$\left r_1 - r_2 \right < C_1 C_2 < r_1 + r_2$				
	$\left r - 2 \right < 5 < r + 2$				
	$r+2>5 \Longrightarrow r>3$ or $ r-2 <5$	$\Rightarrow r < 7$			
	3< <i>r</i> <7				
	$(\alpha,\beta) = (3,7)$				
	$\therefore 3\beta - 2\alpha = 21 - 6 = 15$				
17.	Let $L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and	and $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ be t	two lines. Then which of the		
	following points lies on the	line of the shortest distance	between L_1 and L_2 ?		
	1) $\left(2,3,\frac{1}{3}\right)$ 2) $\left(\frac{14}{3},-\frac{1}{3}\right)$	$3,\frac{22}{3} \qquad 3) \left(\frac{8}{3},-1,\frac{1}{3}\right)$	$4)\left(-\frac{5}{3},-7,1\right)$		
Key:	2				
Sol:	P = (2t + 1, 3t + 2, 4t + 3)		Q = (3s + 2, 4s + 4, 5s + 5)		
	D.R's of $PQ = (3s - 2t + 1, 4s - 1)$	-3t+2, 5s-4t+2)			
	D.R's of $L_1 = (2,3,4)$				
	D.R's of $L_2 = (3, 4, 5)$				
	Then, D.R's of $PO=(12.1)$)			
	,	/			

25 Shift-01

Sol Chaitange III Academy, India.

$$35-2i+1 = \frac{4s-3t+2}{-2} = \frac{5s-4t+2}{1}$$
On solving, $s = \frac{-1}{-6}, t = \frac{1}{3}$

$$P = \left(\frac{5}{3}, 3, \frac{13}{3}\right) Q = \left(\frac{3}{2}, \frac{10}{3}, \frac{25}{6}\right)$$
Equation of PQ is $\frac{x-5}{1} = \frac{y-3}{-2} = \frac{z-\frac{13}{3}}{-1}$
 $\left(\frac{14}{3}, -3, \frac{22}{3}\right)$ lies on PQ.
18. If $\sum_{r=1}^{n} T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$, then $\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{T_r}\right)$ is equal to :
1) $\frac{2}{3}$ 2) 1 3) $\frac{1}{3}$ 4) 0
Key: 1
Sol: $T_n = S_n - S_{n-1} = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64} - \frac{(2n-3)(2n-1)(2n+1)(2n+3)}{64}$
 $= \frac{8(2n-1)(2n+1)(2n+3)}{64} = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64} - \frac{(2n-3)(2n-1)(2n+1)(2n+3)}{64}$
 $= \frac{8(2n-1)(2n+1)(2n+3)}{64} = \frac{(2n-1)(2n+1)(2n+3)}{8}$
 $\frac{1}{T_r} = \frac{8}{(2r-1)(2r+1)(2r+3)}$
 $\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{(2r-1)(2r+1)} - \frac{1}{(2r+1)(2r+3)}\right) = 2\lim_{n \to \infty} \left(\frac{1}{(1)(3)} - \frac{1}{(2n+1)(2n+3)}\right) = \frac{2}{3}$
19. Let the parabola $y = x^2 + px - 3$, meet the coordinate axes at the points P, Q and R. If the circle C with centre at $(-1, -1)$ passes through the points P, Q and R, then the area of ΔPQR is
1) 7 2) 6 3) 5 4) 4

Centre C=(-1, -1) and radius $r = CP = \sqrt{5}$ Equation of circle is $(x+1)^2 + (y+1)^2 = 5$ $y = 0 \Longrightarrow x^2 + 2x - 3 = 0 \Longrightarrow x = -3,1$ Q(-3, 0) and R(1,0)

<u>®</u> Sri	Chaitanya IIT Aca	ademy., India.		2025_Jee-Main_22-Jan-2025_Shift-01	
	Q	R			
	$\Delta = \frac{1}{2} (QR) (C$	(DP) = 6			
20.	The number	of non empty equ	ivalence relations or	n the set $\{1, 2, 3\}$ is	
	1) 7	2) 6	3) 5	4) 4	
Kev:	3	_) 。	0)0	., .	
Sol:	No. of equiv	valence relations =	Bell no.		
	Bell no.				
	For n=1	1			
	For n=2	1	2		
	For n=3	2	3	5	
	No. of equiv	valence relations=	5		
This sec then rou answer Markin	tion contains 5 Nur und off to the Near is from 10.5 and b g scheme: +4 for	merical Value Type Ques rest Integer value (Examp ess than 11 round off is 1 correct answer, 0 if not a	tions. The Answer should be le i,e. If answer is above 10 1). ttempt and -1 in all other co	within 0 to 9999. If the Answer is in Decimal and less than 10.5 round off is 10 and If ases	
21.	Let the func	tion			
	$f(x) = \begin{cases} -3ax^2 - 2, & x < 1 \\ a^2 + bx, & x \ge 1 \end{cases}$				
	be differentiable for all $x \in R$, where $a > 1, b \in R$. If the area of the region enclosed by			the area of the region enclosed by	
	y = f(x) and	I the line $y = -20$ is	s $\alpha + \beta \sqrt{3}$, $\alpha, \beta \in Z$, 1	then the value of $\alpha + \beta$ is	
Key:	34				
Sol:					
	f is continue	ous and differentia	ble at $x=1$		
	$-3a-2=a^2-3a^2-3a^2-3a^2-3a^2-3a^2-3a^2-3a^2-3$	+ b and $-6a = b$			
	$\Rightarrow a = 1 \text{ or } 2,$	$\therefore a > 1, a = 2, b = -12$	2		
	$a^{2}-3a+2=0$ $\Rightarrow a=1 \text{ or } 2, :: a > 1, a = 2, b = -12$				
	$\therefore f(x) = \begin{cases} -6.\\ 4 \end{bmatrix}$	$x^2 - 2, x < 1$ $-12x, x \ge 1$			
	$R.A. = \int_{-\sqrt{3}}^{1} \left[\left(-6x^2 - 2 \right) - (-20) \right] dx + \left(\text{Area of } \Delta ABC \right)$				
	$= \left(-2x^3 + 18x\right)$	$\int_{-\sqrt{3}}^{1} + \frac{1}{2}(1)(12) = 22 + \frac{1}{2}(1)(12) = \frac{1}{2}(1)(12)(12) = \frac{1}{2}(1)(12)(12) = \frac{1}{2}(1)(12)(12) = \frac{1}{2}(1)(12)(12) = \frac{1}{2}(1)(12)(12) = \frac{1}{2}(1)(12)(12)(12) = \frac{1}{2}(1)(12)(12)(12)(12)(12)(12)(12)(12)(12)($	$-12\sqrt{3} = \alpha + \beta\sqrt{3}$	$\therefore \alpha + \beta = 22 + 12 = 34$	

9 | Page

<u> Sri Chaitanya</u>

 $PB^2 =$

$$P = \left(\frac{40}{13}, 0, \frac{-31}{13}\right)$$

$$PB^{2} = \frac{468}{169}$$
∴ 26αPB² = 26(3) $\left(\frac{468}{169}\right) = 216$
If $\sum_{r=0}^{5} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}$, gcd(m, n) = 1, then m - n is equal to _____.
2035
$${}^{n+1}C_{r+1} = \frac{n+1}{r+1}{}^{n}C_{r}$$
Putting n = 11 and r by 2r + 1
$${}^{11}C_{2r+1} \cdot \frac{12}{2r+2} = {}^{12}C_{2r+2} \Rightarrow \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{{}^{12}C_{2r+2}}{12}$$

Sol:

Key: 2035

24.

$${}^{n+1}C_{r+1} = \frac{n+1}{r+1} \, {}^{n}C_{r}$$

Putting

$${}^{11}C_{2r+1} \cdot \frac{12}{2r+2} = {}^{12}C_{2r+2} \Longrightarrow \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{{}^{12}C_{2r+2}}{12}$$
$$\therefore \sum_{r=0}^{5} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{1}{12} \sum_{r=0}^{5} {}^{12}C_{2r+2} = \frac{1}{12} \Big[{}^{12}C_2 + {}^{12}C_4 + \dots + {}^{12}C_{12} \Big]$$
$$= \frac{1}{12} \Big[\Big({}^{12}C_0 + {}^{12}C_2 + {}^{12}C_4 + \dots + {}^{12}C_{12} \Big) - {}^{12}C_0 \Big] = \frac{2{}^{11}-1}{12} = \frac{m}{n}$$
$$\therefore m-n = (2{}^{11}-1) - 12 = 2035$$

Let \vec{c} be the projection vector of $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$, on the vector $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$. If $|\vec{a} + \vec{c}| = 7$, 25. then the area of the parallelogram formed by the vectors \vec{b} and \vec{c} is _____

Key: 16

Sol:
$$\vec{c} = \left(\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2}\right) \vec{a} = \vec{c} = \left(\frac{\lambda + 8}{9}\right) \vec{a}$$

 $|\vec{a} + \vec{c}| = 7 \Rightarrow \left|\vec{a} + \left(\frac{\lambda + 8}{9}\right) \vec{a}\right| = 7 \Rightarrow |\lambda + 17| = 21 \Rightarrow \lambda = 4(\lambda > 0) \qquad \vec{c} = \frac{4}{3}\vec{a}$
Area of parallelogram = $|\vec{b} \times \vec{c}| = \frac{4}{3} |\vec{b} \times \vec{a}| = \frac{4}{3}\sqrt{144} = 16$

<u> Sri Chaitanya IIT Academy., India.</u> PHYSICS

2025 Jee-Main 22-Jan-2025 Shift-01

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

container

In the diagram given below, there are three lenses formed, considering negligible 26. thickness of each of them as compared to $|R_1|$ and $|R_2|$ i.e., the radii of curvature for upper

and lower surfaces of the glass lens, the power of the combination is

$$water\left(\mu = \frac{4}{3}\right)$$

$$glass\left(\mu = \frac{3}{2}\right)$$

$$water\left(\mu = \frac{4}{3}\right)$$

$$water\left(\mu = \frac{4}{3}\right)$$

$$\mathbf{1} \cdot \frac{1}{6} \left[\frac{1}{|R_1|} + \frac{1}{|R_2|}\right]$$

$$\mathbf{2} \cdot -\frac{1}{6} \left[\frac{1}{|R_1|} + \frac{1}{|R_2|}\right]$$

$$\mathbf{3} \cdot -\frac{1}{6} \left[\frac{1}{|R_1|} - \frac{1}{|R_2|}\right]$$

$$\mathbf{4} \cdot \frac{1}{6} \left[\frac{1}{|R_1|} - \frac{1}{|R_2|}\right]$$

Kev: 3

Sol:	$\frac{1}{f_{e_2}} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$	
	$Pe_q = P_1 + P_2 + P_3$ $P_1 = \left(\frac{4}{3} - 1\right) \left(\frac{1}{\infty} - \frac{1}{-R_1}\right)$	$P_{1} = \frac{1}{3R_{1}}$ $P_{2} = \frac{1}{2} \left(\frac{-1}{R_{1}} = \frac{1}{-R_{2}} \right)$
	$=\frac{1}{2}\left(\frac{1}{R_2}-\frac{1}{R_1}\right)$	
	$P_3 = \frac{1}{3} \left(-\frac{1}{R_2} - \frac{1}{\infty} \right) = \frac{-1}{3R_2}$	
	$P_{e_2} = \frac{-1}{6} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	

27. The work functions of cesium (Cs) and lithium (Li) metals are 1.9eV & 2.5eV, respectively. If we incident a light of wavelength 550 nm on these two metal surfaces, then photo -electric effect is possible for the case of

1) Li Only 2) Neither Cs nor Li 3) Both Cs and Li 4) Cs only Key: 4 $E = \frac{12400}{\lambda(A^{\bullet})} = \frac{12+0}{\lambda(nm)} = \frac{1240}{550} = 2.25 \ ev$

Sol:

👧 Sri Chaitanya IIT Academy., India. 2025 Jee-Main 22-Jan-2025 Shift-01 An electron is made to enter symmetrically between two parallel and equally but 28. oppositely charged metal plates, each of 10cm length. The electron emerges out of the electric field region with a horizontal component of velocity $10^6 m/s$. if the magnitude of the electric field between the plates is 9.1 V / cm, then the vertical component of velocity of electron is (mass of electron= 9.1×10^{-31} kg, and charge of electron= 1.6×10^{-19} C). 1)0 **2)** $16 \times 10^4 m / s$ **3)** $16 \times 10^6 m / s$ **4)** $1 \times 10^6 m / s$ Key: 3 Sol: - 10cm time $t = \frac{l}{v_x} = \frac{10 \times 10^{-2}}{10^6} = 10^{-7}$ $v_y = u_y + oyt = o + \left(\frac{eE}{m}\right)t$ $=\frac{1.6\times10^{-19}}{9.1\times10^{-31}}\times9.1\times10^{-2}\times10^{-7}$ $=16 \times 10^{6} m/s$ A parallel capacitor of capacitance $40 \mu F$ is connected to a 100V power supply. Now the 29. intermediate space between the plates is filled with a dielectric material of dielectric constant K=2. Due to the introduction of dielectric material, the extra charge and the change in the electrostatic energy in the capacitor, respectively, are **3**)4 mC and 0.2J **4**)8mC and 2.0J **1)**2 mC and 0.4J **2)**2mC and 0.2 J Key: 3 Sol: $\Delta q = (kc - c) v$ $=4.0\times10^{-6}\times100=4mc$ $\Delta U = \frac{1}{2} C^1 V^2 - \frac{1}{2} C V^2$ $=\frac{1}{2}CV^{2}(2-1)$ $=\frac{1}{2}CV^{2}=\frac{1}{2}\times4.0\times10^{-6}\times10000$ = 0.2J

30. Given is a thin convex lens of glass (refractive index μ) and each side having radius of curvature R. one side is polished for complete reflection. At what distance from the lens, an object be placed on the optic axis so that the image gets formed on the object itself?

1) $R/(2\mu-3)$ **2)** R/μ **3)** μR **4)** $R/(2\mu-1)$

2025 Jee-Main 22-Jan-2025 Shift-01

👧 Sri Chaitanya IIT Academy., India.

Key: 4 Sol: $P_{eo_2} = 2P_1 + P_m$ $-\frac{1}{f_n} = \frac{2}{f_1} - \frac{1}{f_m}$ $= \frac{4(u-1)}{R} - \frac{2}{-R} = \frac{1}{R}(4u-4+2)$ $-\frac{1}{feo_2} = \frac{1}{R}(4u-2)$ $\frac{1}{feo_2} = \frac{-1}{R}(4u-2)$ $feo_2 = \frac{R}{2}$ $R = 2feo_2 = -2\left(\frac{R}{4u-2}\right)$ $= R \frac{-R}{2u-1}$

31. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason(R).

Assertion-(A)- If young's double slit experiment is performed in an optically denser medium than air, then the consecutive fringes come closer.

Reason-(R): The speed of light reduces in an optically denser medium than air while its frequency does not change.

In the light of the above statements, choose the most appropriate answer from the options given below:

1) (A) is false but (R) is true.

2) (A) is true but (R) is false

3) Both (A) and (R) are true but (R) is not the correct explanation of (A).

4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Key: 4

Sol: fringe width
$$\beta = \frac{\lambda D}{d}$$

and
$$u = \frac{\lambda O}{\lambda}$$

32. Two spherical bodies of same materials having radii 0.2m and 0.8 m are placed in same atmosphere. The temperature of the smaller body is 800k and temperature of the bigger body is 400K.. If the energy radiated from the smaller body is E, the energy radiated from the smaller body is (assume, effect of the surrounding temperature to be negligible),

 1)E
 2) 64E
 3) 16E
 4) 256E

 Key: a

👧 Sri Chaitanya IIT Academy., India

2025 Jee-Main 22-Jan-2025 Shift-01

15 | Page

👧 Sri Chaitanya IIT Academy., India.

Sol: Conceptual

35. Given below are two statements:

Statement-I: The equivalent emf of two nonideal batteries connected in parallel is smaller than either of the two emfs.

Statement-II: The equivalent internal resistance of two non ideal batteries connected in parallel is smaller than the internal resistance of either of the two batteries.

In the light of the above statements, choose the correct answer from the options given below.

1)Both Statement –I and Statement-II are false

2) Both Statement-I and Statement -II are true

3)Statement-I is false but statement-II is true.

4)Statement-I is true but Statement-II is false.

Key: 3

Sol:
$$E_{eo_2} = \frac{\frac{E_1}{r_1} + \frac{E_2}{r_2}}{\frac{1}{r_1} + \frac{1}{r_2}}$$

Key: 2

- Sol: $cube = \frac{\lambda\left(\frac{a}{2}\right)}{4} = \frac{\lambda a}{8}$ $\phi = \frac{2_{in}}{e_0} = \frac{\lambda a}{8 \in \mathbb{R}}$
- 37. A closed organ and an open organ tube are filled by two different gases having same bulk modulus but different densities ρ_1 and ρ_2 , respectively. The frequency of 9th harmonic of closed tube is identical with 4th harmonic of open tube. If the length of the closed tube is 10cm and the density ratio of the gases is $\rho_1 : \rho_2 = 1:16$, then the length of the open tube is:

3)

👧 Sri Chaitanya IIT Academy., India. 2025 Jee-Main 22-Jan-2025 Shift-01 An electron in the ground state of the hydrogen atom has the orbital radius of 5.3×10^{-11} m 40. while that for the electron in third excited state is 8.48×10^{-10} m. The ratio of the de Broglie wavelengths of electron in the ground state to that in the excited state is 2)16 **3)**4 4) 9 1)3 Key: 3 Sol: $\lambda = \frac{h}{mr}$ $mvr = \frac{nh}{2\pi}$ $mv = \frac{nh}{2\pi r} \qquad \qquad \lambda = \frac{2\pi rh}{nh}$ $\lambda \alpha \frac{r}{n}$ $\frac{\lambda_1}{\lambda_2} = \frac{r_1 n_4}{n_1 r_4} = \frac{5.3 \times 10^{-11} \times 4}{1 \times 84.8 \times 10^{11}}$ $\frac{\lambda_1}{\lambda_2} = \frac{1}{4}$ 41. 0.9V $R_p = 1\Omega$ $R_e = 2\Omega$ Sliding contact of a potentiometer is in the middle of the potentiometer wire having resistance $R_P = 1\Omega$ as shown in the figure. An external resistance $R_e = 2\Omega$ of is connected via the sliding contact the electric current in the circuit is : 4)0.9A 1)1.0A 2) 1.35A 3) 0.3A Key: 1 Sol: 0.5

 $\frac{1}{4}$

$$\operatorname{Re} q = 0.5 + \frac{0.5 \times 2}{2 + 0.5}$$
$$= \frac{5}{10} + \frac{10}{25} = \frac{45}{50} = 0.9\pi$$
$$i = \frac{V}{R} = \frac{0.9}{0.9} = 1.4 \qquad \lambda = \frac{2\pi rh}{nh} \qquad \lambda \alpha \frac{r}{n}$$
$$\frac{\lambda_1}{\lambda_2} = \frac{r_1 n_4}{n_1 r_4} = \frac{5.3 \times 10^{-11} \times 4}{1 \times 84.8 \times 10^{11}} \qquad \frac{\lambda_1}{\lambda_2} = \frac{r_1 n_4}{n_1 r_4}$$

42. Given below are two statements:

Statement I- In a Vernier Caliper's, one Vernier scale division is always smaller than one main scale division.

Statement II- The Vernier constant is given by one main scale division multiplied by the number of Vernier scale divisions.

In the light of the above statements, choose the correct answer from the options given below.

- 1) Both Statement I and Statemente II are false
- 2) Statement I is true but Statement II is false
- 3) Both Statement I and Statement II are true
- 4) Statement I is false but Statement II is true.

Key: 2

Sol: In general on c V. S. O is Smaller than 1 MSD

 $LC = \frac{1M.SD}{No.of \ vernierscale \ divisions}$

43. A small point of mass m is placed at a distance 2R from the center 'O' of a big uniform solid sphere of mass 'M' and radius R. The gravitational force on 'm' due to 'M' is F_1 . A spherical part of radius R/3 is removed from big sphere as shown in the figure and the gravitational force on m due to remaining part of M is found to be F_2 . The value of ratio $F_1:F_2$ is

$$\int_{1}^{1} \frac{1}{2} \frac{$$

<u>ଛ Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 22-Jan-2025 Shift-01

44. A bob of mass m is suspended at a point 'O' by a light string of length 'l' and left to perform vertical motion (circular) as shown in figure. Initially, by applying horizontal velocity V₀ at the point 'A', the string becomes slack when the bob reaches at the point 'D'. The ratio of the kinetic energy of the bob at the points B and C is

3) 2

4) 4

Key: 3

Sol: Form conservation of energy

 $\frac{1}{2}mV_A^2 = \frac{1}{2}mV_B^2 + mgh$ $\frac{1}{2}m(5g\ell) = \frac{1}{2}mV_B^2 + mg\left(\frac{\ell}{2}\right)$ $KE_C = \frac{1}{2}mg\ell + mg\frac{\ell}{2} = mg\ell \qquad \qquad \frac{KE_B}{KE_C} = 2$

45. If B is magnetic field and μ_0 is permeability of free space, then the dimensions of $\left(\frac{B}{\mu_0}\right)$

is

1) $LT^{-2}A^{-1}$ **2)** $MT^{-2}A^{-1}$ **3)** $ML^{2}T^{-2}A^{-1}$ **4)** $L^{-1}A$

Key: d

Sol: $B = \mu_0 ni$

 $\frac{B}{\mu_0} = ni = L^{-1}A^1$

SECTION-II (NUMERICAL VALUE TYPE)

This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i.e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

46. The position vectors of two 1 kg particles,(A) and (B), are given by $\vec{r_A} = \left(\alpha_1 t^2 \hat{i} + \alpha_2 t \hat{j} + \alpha_3 t \hat{k}\right) \text{m}$ and $\vec{r_B} = \left(\beta_1 t \hat{i} + \beta_2 t^2 \hat{j} + \beta_3 t \hat{k}\right) \text{respectively};$ $(\alpha_1 = 1m/s^2, \alpha_2 = 3nm/s, \alpha_3 = 2m/s, \beta_1 = 2m/s, \beta_2 = -1m/s^2, \beta_3 = 4pm/s)$ Where t is time, n and P are constants. At t=1 s, $|\vec{V_A}| = |\vec{V_B}|$ and velocities $\vec{V_A}$ and $\vec{V_B}$ of the particles are orthogonal to each other. At t=1 s, the magnitude of angular momentum of particle (A) with respect to the position of particle (B) is $\sqrt{Lkgm^2s^{-1}}$. The value of L is

Key: 90

2025 Jee-Main 22-Jan-2025 Shift-01

🧙 Sri Chaitanya IIT Academy., India.

Sol:

 $\vec{V}_{A} = 2t\hat{i} + 3n\hat{j} + 2\hat{k} \qquad \vec{V}_{B} = 2\hat{i} - 2t\hat{j} + 4p\hat{k}$ $\vec{V}_{A}.\vec{V}_{B} = 0 \qquad 4 - 6n + 8p = 0$ $3^{n} = 2 + 4p \qquad \left|\vec{V}_{A}\right| = \left|\vec{V}_{B}\right|$ $4 + 9n^{2} + 4 = 4 + 4 + 16p^{2} \qquad P = \frac{-1}{4} \& n = \frac{1}{3}$ $\vec{L} = m_{A}\left(\vec{r}_{A/B} - X\vec{V}_{A}\right)$ $\vec{r}_{A/B} = (\alpha_{1} - \beta_{1})\hat{i} + (\alpha_{2} - \beta_{2})\hat{j} + (\alpha_{3} - \beta_{3})\hat{k} = (1 - 2)\hat{i} + (1 + 1)\hat{j} + 3\hat{k}$ $\vec{L} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 3 \\ 2 & 1 & 2\end{vmatrix} = \hat{i} + 8\hat{j} - 5\hat{k}$ $\left|\vec{L}\right| = \sqrt{1 + 654 + 25} = \sqrt{90}$

47. A partical is projected at an angle of 30° from horizontal at a speed of 60m/s. The height traversed by the particle in the first second is h_0 and height traversed in the last second, before it reaches the maximum height, is h_1 . the ratio $h_0 : h_1$ is (Take, g=10m/s²)

Key: 5

Sol:

$$\frac{60 \text{ fm}^{20}}{30}$$

$$s_{1} = 30 \times 1 - \frac{1}{2}(10)1 = 25 \ s_{2} = 30 \times \left(\frac{-10}{2}\right)(2 \times 3 - 1) = 5$$

$$\frac{s_{1}}{s} = \frac{25}{5} = 5$$

48. Two soap bubbles of radius 2 cm and 4 cm . respectively, are in contact with each other.The radius of curvature of the common surface , in cm, is

Key: 4

Sol:
$$r = \frac{r_1 r_2}{r_1 - r_2} = \frac{2 \times 4}{4 - 2} = 4 \text{ Cm}$$

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 22-Jan-2025 Shift-01

49. Three conductors of same length having thermal conductivity k_1, k_2 and k_3 are connected as shown in figure.

10	0°C	$\theta^{\circ}C$		0°C
	$1.k_1$		$3.k_{3}$	
	2. <i>k</i> ₂		5	

Area of cross sections of 1st and 2nd conductor are same and for 3rd conductor it is double of the 1st conductor. The temperatures are given in the figure . In steady state condition, the value of θ is °*C*

(Given:
$$k_1 = 60Js^{-1}m^{-1}K^{-1}, k_2 = 120Js^{-1}m^{-1}K^{-1}, k_3 = 135Js^{-1}m^{-1}K^{-1}$$
)

Key: 40

Sol:

50. The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature R=2m. Another car approaches him from behind with a uniform speed of 90km/hr. When the car is at a distance of 24m from him, the magnitude of the acceleration of the image of the car in the side view mirror is 'a'. The value of 100a is m/s^2

Sol:
$$V = \frac{uf}{u - f} = \frac{24}{25}$$
 $m = \frac{-v}{u} = \frac{24}{25(-24)} = \frac{1}{25}$
 $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $v_i = -m^2 v_0 = -\frac{1}{25}$
 $\frac{-1}{v^2} \left(\frac{dv}{dt}\right) + \frac{1}{u^2} \left(\frac{du}{dt}\right) = 0 \ a_1 = \frac{2}{v} \left(v_i^2\right) - \frac{2v^2}{u^3} \left(v_0^2\right)$
 $= \frac{2}{(24)25} - \frac{2}{24} = -\frac{2}{25}$ $100a_1 = \frac{2}{25} \times 100 = 8$

🧟 Sri (Chaitanya IIT Academy.,	India.	2	025 Jee-Main 22-Jan-2025 Shift-01	
52.	How many different stereoisomers are possible for the given molecule?				
	$CH_3 - CH - CH = C$	$CH - CH_3$			
	О́Н				
	1) 4	2) 1	3) 3	4) 2	
Key:	1				
Sol:					
	$\begin{array}{c} CH_3 - CH - CH_3 \\ \\ OH \end{array}$				
	n = stereo centres Total $SI = 2^2 = 4$	/ stereogenic area; 2	2		
53.	From the magneti	c behavior of [<i>NiCl</i>	$_{4}]^{2-}$ (paramagnetic) and $[Ni(CO)_4]$ (diamagnetic),	
	choose the correct	t geometry and oxid	ation state.		
	$1 \begin{bmatrix} NiCl_4 \end{bmatrix}^{2-} : Ni^{II} \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix} : Ni^{II} \end{bmatrix}$, tetrahedral ⁷ , square planar	2) $\begin{bmatrix} NiCl_4 \end{bmatrix}^{2-} : Ni^{II} \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix} : Ni(O)^{1/2} $, square planar)), square planar	
	3) $\begin{bmatrix} NiCl_4 \end{bmatrix}^{2-} : Ni^{II} \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix} : Ni(CO)_4 \end{bmatrix}$, tetrahedral 0), tetrahedral	4) $\begin{bmatrix} NiCl_4 \end{bmatrix}^{2-} : Ni(0) \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix} : Ni(0) \\ \end{bmatrix}$), tetrahedral)), square planar	
Key:	3				
Sol:	$\begin{bmatrix} NiCl_4 \end{bmatrix}^{2-} \Rightarrow Ni \rightarrow \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix} \Rightarrow Ni \rightarrow \\ \end{cases}$	+2, tetrahedral			
54.	A vessel at 1000K	C contains CO_2 with	pressure of 0.5atm	Some of CO_2 is converted into	
	CO on addition of graphite. If total pressure at equilibrium is 0.8atm, then Kp is				
	1) 0.18 atm	2) 3 atm	3) 1.8 atm	4) 0.3 atm	
Key:	3				
Sol:					
	$CO_2(g) + C(s) \longleftrightarrow$ $0.5 - x$	$2CO(g) \\ 0 \\ 2x$			
	$0.5 + x = 0.8 \Longrightarrow x = 0$	0.3			
	$Kp = \frac{0.6 \times 0.6}{0.2} = 1.8a$	utm			

🧟 Sri 🛛	Chaitanya IIT Academy., India.	2025 Jee-Main 22-Jan-2025 Shift-01
55.	A liquid when kept inside a thermall	y insulated closed vessel at $25^{\circ}C$ was mechanically
	stirred from outside. What will be the	e correct option for the following thermodynamic
	parameters?	
	1) $\Delta U = 0, q < 0, w > 0$	2) $\Delta U < 0, q = 0, w > 0$
	3) $\Delta U = 0, q = 0, w = 0$	4) $\Delta U > 0, q = 0, w > 0$
Key:	4	
Sol:	Adiabatic process $\Rightarrow q = 0$	
	Work done on the system $\Rightarrow W > 0$	
	$\Delta U = q + w \Longrightarrow \Delta U > 0$	
56.	The incorrect statements regarding g	eometrical isomerism are.
	a) Propene shows geometrical isometrical	rism.
	b) Trans-isomer has identical atoms/g	groups on the opposite sides of the double bond.
	c) Cis-but-2-ene has higher dipole me	oment than trans-but-2-ene.
	d) 2-metylbut-2-ene shows two geom	netrical isomers.
	e) Trans-isomer has lower melting po	bint than cis isomer
	Choose the correct answer from the c	options given below
	1) A, D and E only	2) B and C only
	3) A and E only	4) C, D and E only
Key:	1	
Sol:	A) $CH_3 - CH = CH_2 :\rightarrow$ donot show GI	
	B) donot shows GI $CH_3 - C = CH - CH_3$ CH_3	
57.	E) Trans Isomer has high melting point Given below are two statements :	int than cis.
	Statement - I : One mole of propyne	reacts with excess of sodium to liberate half a mole
	of H_2 gas.	
	Statement - II : four g of propyne rea	cts with $NaNH_2$ to liberate NH_3 gas which occupies
	224mL at STP.	
	In the light of the above statements, c	choose the most appropriate answer from the options
	given below	

<u> Sri Chaitanya IIT Academy., India.</u> 2025 Jee-Main 22-Jan-2025 Shift-01 1) Both Statement – I and Statement – II are correct. 2) Statement – I is incorrect but Statement – II is correct. 3) Statement – I is correct but Statement – II is incorrect. 4) Both Statement – I and Statement – II are incorrect. Key: 3 Sol: $CH_3 - C \equiv C - H + Na \rightarrow H_3C \equiv \overline{C}Na^+ \frac{1}{2}H_2$ $CH_3 - C \equiv C - H + NaNH_2 \rightarrow CH_3 - C \equiv \overline{C}Na^+ + NH_3$ Mwt:- 40g $1 mole \rightarrow 1 mole NH_3$ $0.1 mole \rightarrow 0.1 mole NH_3$ $0.1 mole NH_3 \rightarrow 2240 mL NH_3$ Statement – I:- correct Statement – II:- NH₃ Radius of the first excited state of Helium ion is given as 58. $a_0 \rightarrow$ radius of first stationary state of hydrogen atom. **4)** $r = \frac{a_0}{2}$ **1)** $r = 2a_0$ **2)** $r = \frac{a_0}{4}$ **3)** $r = 4a_0$ Key: 1 Sol: $r \propto \frac{n^2}{7}$ 59. Which of the following statement is not true for radioactive decay? 1) Decay constant increases with increase in temperature 2) Decay constant does not depend upon temperature 3) Half life is ln 2 times of $\frac{1}{\text{rate constant}}$ 4) Amount of radioactive substance remained after three half lives is 1/8th of original amount Key: 1 Sol: The decay constant depends only on the particular radioactive nuclide and decay mechanism involved. It does not depend on the number of nuclei present or on any external conditions (such as temperature). Jee-Main-2025_Jan Session 26 | Page

<u>@ Sri (</u> 60.	haitanya IIT Academy., India . Which of the following acids is a Vi	itamir	2025 Jee-Main 22-Jan-2025 Shift-01
	1) Adipic acid 2) Ascorbic acid	3)	Aspartic acid 4) Saccharic acid
Key:	2	,	1 /
Sol:	Ascorbic acid Vitamin C.		
61.	Match List-I with List-II.		
	List-I		List-II
	$A Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$	I)	Ionisation Enthalpy
	B B < C < O < N	II)	Metallic character
	C $B < Al < Mg < K$	III)	Electronegativity
	D Si < P < S < Cl	IV)	Iconic radii
	Choose the correct answer from the	optio	ns given below:
	1) A–II, B–III, C–IV, D–I	2)	A–III, B–IV, C–II, D–I
Kev.	3) A–IV, B–I, C–II, D–III	4)	A–IV, B–I, C–III, D–II
Rey.	$A1^{3+} < Ma^{3+} < Na^{+} < F^{-}$		
Sol:	Al < Mg < Na < F : Ionic radii		
	B < C < N < O: Ionisation Enthalpy B < A1 < Mg < K · Metallic character	/ >r	
	Si < P < S < Cl : Electronegativity	51	
62.	A solution of aluminium chloride is electrolysed for 30 minutes using a current of 2A.		
	The amount of the aluminium deposited at the cathode is		
	[Given: molar mass of aluminium and chlorine are $27g mol^{-1}$ and $35.5g mol^{-1}$ respectively.		
	Faraday constant=96500 $C mol^{-1}$]		
	1) 0.441g 2) 1.007g	3)	0.336g 4) 1.660g
Key:	3		
Sol:	Amount of Al deposited = $\frac{30 \times 60 \times 2}{96500}$	$\frac{\times 9}{-} = 0$.336g
63.	In which of the following complexe	s the	CFSE, Δ_o will be equal to zero?
	1) $\left[Fe(en)_3\right]Cl_3$ 2) $\left[Fe(NH_3)_6\right]Bh$	·2 3) $K_3[Fe(SCN)_6]$ 4) $K_4[Fe(CN)_6]$
Key:	3		
Sol:	<i>SCN</i> ⁻ is a weak field ligand		
	$Fe^{3+} \rightarrow [1] [1] [1]$		
	$l_2g eg$		
	$Cr_{00} = (-0.4 \times 3 + 0.0 \times 2) \Delta_0 = 0$		

<u> Sri Chaitanya IIT Academy., India.</u> 2025 Jee-Main 22-Jan-2025 Shift-01 Which of the following electrolyte can be used to obtain $H_2S_2O_8$ by the process of 64. electrolysis? 1) Dilute solution of Sodium sulphate 2) Dilute solution of Sulphuric acid 3) Acidified dilute solution of Sodium sulphate 4) Concentrated solution of Sulphuric acid Key: 4 con, solution of H_2SO_4 (electrolysis). Sol: $H_2SO_4 \longrightarrow H^+ + SO_4^{2-}$ <u>At cathode</u> $2H^+ + 2e^- \rightarrow H_2$ At anode $2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2e^{-}$ The IUPAC name of the following compound is 65. $\begin{array}{cccc} CH_3-&CH-CH_2-CH_2-&CH-CH_3\\ &\mid &\mid\\ COOH&&COOCH_3 \end{array}$ 1) Methyl-5-carboxy-2- methylhexanoate 2) Methyl-6-carboxy-2,5- dimethylhexanoate 3) 6-methoxycarbonyl-2,5-dimethylhexanoic acid 4) 2-carboxy-5-methoxycarbonylhexane Key: 3 Sol: $COOH = \begin{bmatrix} O \\ C - OCH_3 \\ C -$ 6-Methoxy carbonyl -2,5 - dimethyl hexanoic acid. 66. The compounds which give positive Fehling's test are. CHO CH3 a) b) CHO **d)** $HOCH_2 - CO - (CHOH)_3 - CH_2 - OH$ **d)** $CH_3 - \overset{"}{C} - H$ E) Jee-Main-2025_Jan Session 28 | Page

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 22-Jan-2025 Shift-01

Choose the correct answer from the options given below :

1) A, B & C only **2**) A, C & D only **3**) C, D & E only **4**) A, D & E only

Key: 3

Sol:

 $CH_3 - CH = O; \rightarrow$ given positive Fehling's test

67. Arrange the following solutions in order of their increasing boiling points

(I)10 ⁻⁴ M NaCl	$(II)10^{-4}$ M Urea	(III)10 ⁻³ M NaCl	$(IV)10^{-2}$ M NaCl
1) II < I \equiv III <	IV	2) IV < III < I <	< II
3) I < II < III < I	V	4) II < I < III <	IV

Key: 4

Sol: $\Delta T_b = i \times kb \times m$

i For NaCl = 2

i For Urea=1

ii < i < iii < iv

68. Given below are two statements :

Statement-1: $CH_3 - O - CH_2 - Cl$ will undergo S_N1 reaction though it is a primary halide.

$$CH_{3}$$

$$CH_{3} - C - CH_{2} - C$$

Statement-II: CH_3 will not undergo $S_N 2$ reaction very easily though it is a primary halide

In the light of the above statements, choose the most appropriate answer from the options given below

1) Both Statement – I and Statement – II are correct.

2) Both Statement – I and Statement – II are incorrect.

3) Statement – I is correct but Statement – II is incorrect.

```
4) Statement – I is incorrect but Statement – II is correct.
```

Key: 1

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 22-Jan-2025 Shift-01 $CH_3 - O - CH_2 - Cl$ gives S_N1. Stable carbocation due to back bonding Sol: CH_3 $CH_3 - C - CH_2 - Cl$ CH_3 not gives S_N2 due to steric crowding Lanthanide ions with $4f^7$ configuration are : 69. **b)** Gd^{3+} **c)** Eu^{3+} **d)** Tb^{3+} E) Sm^{2+} **a)** Eu^{2+} Choose the correct answer from the options given below 1) A and D only 2) B and C only 3) A and B only 4) B and E only Key: 3 Sol: $4f^7$ $Eu^{2+} \rightarrow 4f^{7} \qquad Gd^{3+} \rightarrow [Xe]4f^{7}$ $Eu^{2+} \rightarrow [Xe]4f^{7} \qquad Gd^{3+} \rightarrow [Xe]4f^{7}$ Which of the following electronegativity order is incorrect 70. **1)** Mg < Be < B < N**2)** Al < Si < C < N **4)** Al < Mg < B < N**3)** S < Cl < O < FKey: d Sol: $Mg \rightarrow 1.2$ $Be \rightarrow 1.5$ $Be \rightarrow 1.5$ $B \rightarrow 2.0$ $N \rightarrow 3.0$ $0 \rightarrow 3.5$ $F \rightarrow 4.0$ $Si \rightarrow 1.8$ $C \rightarrow 2.5$ $S \rightarrow 2.5$ $Cl \rightarrow 3.0$ As compare in options, option d is incorrect. SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases. 71. Consider the following sequence of reactions : NO_2 i) Sn / HCl ii) $NaNO_2$, HCl, 0^oC iii) Cu_2Cl_2 A(Product) iv) Na, Ether Molar mass of the product formed (A) is $g mol^{-1}$. Jee-Main-2025_Jan Session 30 | Page

🞅 Sri Chaitanya IIT Academy., India.

Key: 154

```
Sol:
```


=154g

72. In Carius method for estimation of halogens, 180mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of Chlorine in the compound is _____% [Given : molar mass in $g mol^{-1}$ of Ag:108, Cl:35.5].

Key: 20

- Sol: percentage of Cl = $\frac{35.5}{143.5} \times \frac{143.5 \times 10^{-3}}{180 \times 10^{-3}} \times 100$ = 19.7 \approx 20%
- 73. The number of molecules/ions that show linear geometry among the following is ______ SO₂, BeCl₂, CO₂, N₃⁻, NO₂, F₂O, XeF₂, NO₂⁺, I₃⁻, O₃,

Key: 6

Sol: $BeCl_2, CO_2, N_3^-, XeF_2, NO_2^+, I_3^- - 6$

74. $A \rightarrow B$

The molecule of A changes into its isomeric form B by following a first order kinetics at a temperature of 1000K. If the energy barrier with respect to reactant energy for such isomeric transformation is 191.48 K_{jmol}^{-1} and the frequency factor is 10^{20} , the time required for 50% molecules of A to become B is ______ picoseconds (nearest integer). [Given $R = 8.314J \ K^{-1}mol^{-1}$]

Key: 69

Sol:
$$k = Ae^{-}\frac{\Delta H}{RT}$$
 $\log k = \frac{-\Delta H}{2303RT} + \log A$

🧟 Sri (Chaitanya IIT Academy., India. 2025 Jee-Main 22-Jan-2025 Shift-01
	$\log k = \frac{-191.48 \times 10^3}{2303 \times 8.314 \times 1000} + \log 10^{20}$
	$\log k = -10 + 20 \qquad \qquad \log k = 10 k = 10^{10}$
	$t_{\frac{1}{2}} = \frac{0.693}{10^{10}} = 0.693 \times 10^{-10}$ 1 pico second = 10^{-12} sec = 69.3 pico seconds
75.	Some CO_2 gas was kept in a sealed container at a pressure of 1 atm and at 273K. This
	entire amount of CO_2 gas was later passed through an aqueous solution of $Ca(OH)_2$. The
	excess unreacted $Ca(OH)_2$ was later neutralized with 0.1M of 40mL HCl. If the volume of
	the sealed container of CO_2 was x, then x iscm ³ . (nearest integer)
	[Given: The entire amount of $CO_2(g)$ reacted with exactly half the initial amount of
	$Ca(OH)_2$ present in the aqueous solution.]
Key:	45
Sol:	moles of <i>HCl</i> used to neutralise excess $Ca(OH)_2$
	Mole of $HCl = \frac{0.1 \times 40}{1000} = 0.004 moles$
	$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$
	Moles of $Ca(OH)_2$ neutralized = 0.002 moles
	Initially we have $4 \text{ mmole of } Ca(OH)_2$
	Volume of $CO_2 = 0.002 mole$
	PV = nRT
	$1 \times V = 0.002 \times 0.0821 \times 273$
	V = 0.0448 lt
	$= 44.8ml \simeq 45ml$

JEE MAIN 2024

K C BASAVA REDDY APPL.No. 240310618179*

POWE ORDIN

PROUDLY ACHIEVED **22 RANKS IN TOP 1000**

SEIZES **4 RANKS** IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 **ALL INDIA OPEN CATEGORY**

SCAN THE QR CODE