

SRICHAITANYA NATION'S 1STCHOICE FOR IIT-JEE SUCCESS

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY

JEE MAIN (JAN) 2025 – SHIFT 2 23-01-2025

Sri Chaitanya IIT Academy., India. A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON Central Office – Madhapur – Hyderabad 2025_Jee-Main_23-Jan-2025_Shift-02 MATHEMATICS Max Marks: 100 (SINGLE CORRECT ANSWER TYPE) This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. If in the expansion of $(1+x)^p(1-x)^q$, the coefficients of x and x^2 are 1 and -2 respectively, 1. then $p^2 + q^2$ is equal to: 1)18 2)133)8 4)20Key: 2 Given expansion is $(1 + px + \frac{p(p-1)}{2}x^2 +)(1 - qx + \frac{q(q-1)}{2}x^2 +)$ Sol: Coefficient of x = p - q = 1....(1) Coefficient of $x^2 = \frac{q(q-1)}{2} + \frac{p(p-1)}{2} - pq = -2$ $\Rightarrow (p-q)^2 - (p+q) = -4....(2)$ (1),(2) $\Rightarrow p = 3, q = 2 \Rightarrow p^2 + q^2 = 13$ If $I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} dx$, then $J = \int_{0}^{21} \frac{x \sin x \cos x}{\sin^{4} x + \cos^{4} x} dx$ equals: 2. 2) $\frac{\pi^2}{12}$ 3) $\frac{\pi^2}{16}$ 4) $\frac{\pi^2}{8}$ 1) $\frac{\pi^2}{4}$ Key: 3 Sol: Given $I = \int_{1}^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}}x}{\frac{3}{2}} dx \dots (1)$ $I = \int_{0}^{\frac{1}{2}} \frac{\cos^{\frac{3}{2}} x}{\cos^{\frac{3}{2}} x + \sin^{\frac{3}{2}} x} dx....(2) \text{ (By king's property)}$ $(1)+(2) = 2I = \int_{-\infty}^{\frac{1}{2}} 1 dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$ Let $J = \int_{0}^{2I} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx = \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx.....(3)$

<u>®</u> Sri C	haitanya IIT Academy.,	India.		2025 Jee-Main 23-Jan-2025 Shift-2
	$J = \int_{0}^{\pi/2} \frac{\left(\frac{\pi}{2} - x\right) \sin x \cos^{4} x}{\sin^{4} x + \cos^{4} x}$	$\frac{sx}{dx}$ (4)	(By king's propert	y)
	$(3)+(4) \Rightarrow 2J = \frac{\pi}{2} \int_{0}^{\pi/2}$	$\frac{\sin x \cos x}{\sin^4 x \cos^4 x} dx = \frac{\pi}{4} \int_0^{\pi/2} \frac{1}{4} \int_0^{\pi/2}$	$\frac{\sin 2x}{1+\cos^2 2x}dx$	
	(put cos2x=t) =	$\frac{\pi}{4} \int_{-1}^{1} \frac{1}{1+t^2} dt$		
	$\Rightarrow J = \frac{\pi}{8} \left(\frac{\pi}{4} - \left(\frac{-\pi}{4} \right) \right) =$	$=\frac{\pi^2}{16}$		
3.	The number of co	mplex numbers z, s	satisfying $ z = 1$ and	$\left \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right = 1$, is :
Key:	1)8 1	2)10	3)4	4)6
Sol:	$\left z\right = 1, \left \frac{z}{\overline{z}} + \frac{\overline{z}}{z}\right = 1 \Longrightarrow \left \frac{c}{cis}\right $	$\frac{is\theta}{(-\theta)} + \frac{cis(-\theta)}{cis\theta} = 1 \qquad \theta \in$	[0,2π)	
	$\Rightarrow 2\left \cos 2\theta\right = 1 \Rightarrow \cos 2\theta$	$2\theta = \pm \frac{1}{2} \qquad 2\theta \in [0, 4\pi)$		
	$\Rightarrow 2\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	$,\frac{7\pi}{3},\frac{8\pi}{3},\frac{10\pi}{3},\frac{11\pi}{3}\Rightarrow 8$		
4.	Let the point A di	vide the line segme	ent joining the point	ts $P(-1,-1,2)$ and $Q(5,5,10)$
	internally in the ra	atio $r:1(r>0)$. If O	is the origin and ($\left[\overrightarrow{OQ},\overrightarrow{OA}\right) - \frac{1}{5} \left \overrightarrow{OP} \times \overrightarrow{OA}\right ^2 = 10$, then the
	value of r is :			
Key:	1)14 4	2) √7	3)3	4)7
Sol:	Let A divide \overrightarrow{PQ} is	In the ratio $\lambda:1-\lambda=$	$r: 1\left(r=\frac{\lambda}{1-\lambda}, 0<\lambda<1\right)$	$\Rightarrow A(6\lambda - 1, 6\lambda - 1, 8\lambda + 2)$
	$\lambda: 1 - \lambda$	$(0 < \lambda < 1)$		
	P A (-1,-1,2)	Q (5,5,10)		
	Given $5(\overrightarrow{OQ},\overrightarrow{OA}) - $	$\overrightarrow{OP} \times \overrightarrow{OA} \Big ^2 = 50$		
	$5[140\lambda+10] - (800\lambda^2$) = 50		
	$\Rightarrow \lambda = \frac{7}{8}, \therefore r = \frac{\lambda}{1-\lambda}$	=7		
5.	Let $\int x^3 \sin x dx = g(x)$	(x) + C, where C is t	he constant of integ	gration. If
	$8\left(g\left(\frac{\pi}{2}\right)+g'\left(\frac{\pi}{2}\right)\right)=$	$=\alpha\pi^3+\beta\pi^2+\gamma,\alpha,\beta,z$	$\gamma \in Z$, then $\alpha + \beta - \gamma$	equals:
	1)47	2)62	3)48	4)55
Key:	4			

👷 Sri Chaitanya IIT Academy., India 2025 Jee-Main 23-Jan-2025 Shift-2 Given $\int x^3 \sin x dx = x^3 (-\cos x) + 3x^2 \sin x + 6x \cos x - 6 \sin x + c$ Sol: Given g(0)=0 $g(x) = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x$ $\therefore g\left(\frac{\pi}{2}\right) = \frac{3\pi^2}{4} - 6, g'\left(\frac{\pi}{2}\right) = \frac{\pi^3}{8}$ $\therefore 8\left[g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right] = 6\pi^2 - 48 + \pi^3$ $= \alpha = 1, \beta = 6, \gamma = -48 \qquad = \alpha + \beta - \gamma = 55$ If the square of the shortest distance between the lines $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{3}$ and 6. $\frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5}$ is $\frac{m}{n}$, where m, n are coprime numbers, then m+n is equal to : 1)142)9 3)6 4)21 Key: 2 $(\text{shortest distance})^2 = \left(\frac{\left|\left[\overline{a} - \overline{c} \quad \overline{b} \,\overline{d}\right]\right|}{\left|\overline{b} \times \overline{d}\right|}\right)^2 = \left(\frac{2}{\sqrt{5}}\right)^2 = \frac{4}{5} = \frac{m}{n}$ Sol: $\therefore m + n = 9$ $\overline{a} = 2i + j - 3k$, $\overline{c} = -i - 3j - 5k$, $\overline{b} = i + 2j - 3k$, $\overline{r} = 2i + 4j - 5k$ $\left|\overline{b} \times \overline{d}\right| = \left|2i - j\right| = \sqrt{5}$ $\left|\left[\overline{a} - \overline{c} \quad \overline{b} \quad \overline{d}\right]\right| = \begin{vmatrix}3 & 4 & 2\\1 & 2 & -3\\2 & 4 & 5\end{vmatrix} = 2$ The length of the chord of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$, whose mid-points is $\left(1, \frac{1}{2}\right)$, is : 7. 1) $\frac{1}{3}\sqrt{15}$ 2) $\frac{5}{3}\sqrt{15}$ 3) $\sqrt{15}$ 4) $\frac{2}{2}\sqrt{15}$ Key: 4 Sol: equation of chord is $s_1 = s_{11} \Rightarrow x + 4 = \frac{3}{2}$ Solving with $\frac{x^2}{4} + \frac{4^2}{2} = 1$ Gives $6x^2 - 12x + 1 = 0$ Let x_1, x_2 be roots $\Rightarrow x_1 + x_2 = 2, x_1x_2 = \frac{1}{6}$ If $(x_1, y_1), (x_2, y_2)$ are extremities of chord Length of chord = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $=\sqrt{(x_1-x_2)^2+(x_1-x_2)^2} \quad \because y_1-y_2=\left(\frac{3}{2}-x_1\right)-\left(\frac{3}{1}-x_2\right)$ $= \sqrt{2((x_1 + x_2)^2 - 4x_1x_2)} = -(x_1 - x_2)$ $=\sqrt{2\left(4-\frac{2}{3}\right)}=\sqrt{\frac{2(10)}{3}}=2\sqrt{\frac{5}{3}}=\frac{2}{3}\sqrt{15}$

🧟 Sri (Chaitanya IIT Academy., India.	2025 Jee-Main 23-Jan-2025 Shift-2		
8.	A rod of length eight units moves such that its ends A a	nd B always lie on the lines		
	x-y+2=0 and $y+2=0$, respectively. If the locus of the point P, that divides the rod AB			
	internally in the ratio 2:1 is $9(x^2 + \alpha y^2 + \beta xy + \gamma x + 28y) -$	76 = 0, then $\alpha - \beta - \gamma$ is equal to :		
	1)21 2)24 3)23	4)22		
Key:	3			
Sol:	Let $A(\alpha, \alpha + 2), B(\beta, -2)$ be ends of rod			
	$= p(x,y) = \left(\frac{\alpha+2\beta}{3}, \frac{\alpha-2}{3}\right) \Longrightarrow \alpha + 2\beta = 3x, \alpha = 3y+2, \beta = \frac{3x-3y-2}{2}$			
	Given $(\alpha - \beta)^2 + (\alpha + 4)^2 = 64$			
	$(9y-3x+6)^2 + 4(34+6)^2 - 256 = 0$			
	$\Rightarrow 9(x^2 + 13y^2 - 6xy - 4x + 28y) - 76 = 0 \qquad \therefore \alpha = 13, \beta = -6, \gamma = -$	4		
9.	A board has 16 squares as shown in the figure:			
		down The much shiliter that the much such		
	Out of these 10 squares, two squares are choses at rand	iom. The probability that they have		
	1)3/5 2)23/30 3)7/10	4)4/5		
KEY				
SOL:	: Total number of ways of selections 2 squares = $16c_2 = 12$.0		
	No of ways of selecting 2 squares having no side			
	common = 120-no of ways of selecting 2 adjacent squa	ares 120-2(3)(4)=96		
	96 4			
	\therefore probability = $\frac{1}{120} = \frac{1}{5}$			
10.	Let $X = R \times R$. Define a relation R on X as :			
	$(a_1,b_1)R(a_2,b_2) \Leftrightarrow b_1 = b_2$			
	Statement -I : R is equivalence relation.			
	Statement -II: for some (a, b) $\in X$, the set $S = \{(x, y) \in X\}$	(x, y)R(a, b) represents a line		
	parallel to y=x.			
	In the light of the above statements, choose the correct	answer from the options given		
	below:			
	1)Statement I is false but Statement II is true			
	2)Both Statement I and Statement II are false			
	3)Both Statement I and Statement II are true			
	4)Statement I is true but Statement II is false			

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 23-Jan-2025 Shift-2 Key: 1 'is equal to' is an equivalent relation \therefore R is equivalence relation (for any a_1, a_2) Sol: : I is true, (in fact any two points on a horizontal line as related) : II is false, $((a_1,b_1)R(a_2,b_2) \Leftrightarrow b_1 = b_2)$ points are on the same horizontal line : 11. The system of equations x + y + z = 6,x + 2y + 5z = 9, $x + 5y + \lambda z = \mu$, has no solution if 2) $\lambda = 17, \mu = 18$ 3) $\lambda = 15, \mu \neq 17$ 4) $\lambda \neq 17, \mu \neq 18$ 1) $\lambda = 17, \mu \neq 18$ Key:1 Sol: x + y + z = 6 -----(1) x + 2v + 5z = 9-----(2) $x + 5y + \lambda z = \mu$ ----(3) $(1)-(2) \Rightarrow -y-4z = ----3$ v + 4z = 3 - - - - (4) $(2)-(3) \Rightarrow -3y + (5-\lambda)z = 9 - \mu$ $y + \frac{(\lambda - 5)z}{2} = \frac{-9 + \mu}{2}$ -----(5) No solution $\Rightarrow 4 = \frac{\lambda - 5}{3}$ $\frac{-9 + \lambda}{3} \neq 3$ $\mu \neq 18$ $\lambda = 17$ A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When 12. the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm^3 /min and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4\pi}cm/\min$. The surface are (in cm^2) of the chocolate ball (without the ice-cream layer) is: 1)128 π 2)256 π $3)225 \pi$ 4)196 π Key: 2 Sol: $\frac{dv}{dt} = 81$ $V = \frac{4}{3}\pi ((r+1)^3 - r^3)$ $\frac{dv}{dv} = \frac{4}{3}\pi \left[3(r+1)^2\right]\frac{dr}{dt}$ $81 = (r+1)^2 r+1=9 r=8$ $S = 4\pi r^2 = 256\pi$

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 23-Jan-2025 Shift-2 13.Let x = x(y) be the solution of the differential equation $y = \left(x - y\frac{dx}{dy}\right)\sin\left(\frac{x}{y}\right), y > 0$ and $x(1) = \frac{\pi}{2}$. Then $\cos(x(2))$ is equal to: 1) $1-2(\log_e 2)^2$ 2) $1-2(\log_e 2)$ 3) $2(\log_e 2)-1$ 4) $2(\log_e 2)^2-1$ Key:1 Sol: $y = \left(x - y\frac{dx}{dy}\right)\sin\frac{x}{y}$ X=yv $\frac{dx}{dy} = V + y \frac{dv}{dy}$ $1 = \left(\frac{x}{v} - \frac{dx}{dv}\right) \sin \frac{x}{v}$ $1 = \left(\psi - \psi - y \frac{dv}{dv} \right) \sin v$ $\int \frac{dy}{v} = \int -\sin v dv$ $\log y = \cos v + c$ $\log x = \cos\left(\frac{x}{y}\right) + C$ $0 = O + C \quad C = 0$ $\log_e y = \cos\left(\frac{x}{y}\right)$ $\frac{x}{y} = \cos^{-1} \left[\log_e y \right]$ $x = y \cos^{-1} \left[\log_{e} y \right]$ $x(2) = 2\cos^{-1}(\log_e 2)$ $\cos x(2) = \cos \left[2\cos^{-1}(\log_e 2) \right]$ $=2(\log_e 2)^2 - 1$ or $1 - 2(\log_e 2)^2$ Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a 3×3 matrix such that $A \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, A \begin{bmatrix} 4\\1\\3 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $A \begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, then a_{23} 14. equals: 2) 2 3)-1 4)01)1Jee-Main-2025_Jan Session 6 | Page

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 23-Jan-2025 Shift-2

Key:3 Sol: $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$ $\begin{vmatrix} a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $a_{12} = 0$ $a_{22} = 0$ $a_{32} = 1$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\begin{array}{c}
4a_{11} + a_{12} + 3a_{13} = 0 \\
4a_{21} + a_{22} + 3a_{23} = 1
\end{array}$ $\begin{array}{c}
4a_{11} + 3a_{13} = 0 \\
\Rightarrow 4a_{21} + 3a_{23} = 1
\end{array}$ $4a_{31} + a_{32} + 3a_{33} = 0$ $4a_{31} + 3a_{33} = -1$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $2a_{11} + a_{12} + 2a_{13} = 1$ $2a_{11} + 2a_{13} = 1$ $2a_{21} + a_{22} + 2a_{23} = 0$ $\Rightarrow 2a_{21} + 2a_{23} = 0$ $a_{31} + a_{32} + 2a_{33} = 0$ $a_{31} + 2a_{33} = -1$ $4a_{21} + 3a_{23} = 1$ $a_{21} + a_{23} = 0$ $a_{21} = -a_{23}$ $a_{21} = 1$ $a_{23} = -1$

15. Let the shortest distance from (a,0), a>0, to the parabola $y^2 = 4x$ be 4. Then the equation of the circle passing through the point (a,0) and the focus of the parabola, and having its centre on the axis of the parabola is:

1) $x^{2} + y^{2} - 6x + 5 = 0$ 3) $x^{2} + y^{2} - 10x + 9 = 0$ Key:1 Sol: S=(1,0) $P(t^{2}, 2t)$ $2) x^{2} + y^{2} - 4x + 3 = 0$ $4) x^{2} + y^{2} - 8x + 7 = 0$

<u> Sri Chaitanya IIT Academy., India</u>.

2025 Jee-Main 23-Jan-2025 Shift-2 Normal at $y + xt = 2t + t^3$ Passes through (a,0) $at = 2t + t^3$ t = 0 or $t^2 = a - 2$ $a = t^2 + 2$ \therefore Given point $(t^2 + 2, 0)$ $\sqrt{4+4t^2} = 4$ (given) $4 + 4t^2 = 16$ $t^2 = 3$ \therefore point (5,0) S=(1,0)Circle is $x^{2} + y^{2} + 2yx + c = 0$ Passes through (5,0) & (1,0)25 + 10g + c = 024+10g=0 g=-3 c=5Circle is $x^{2} + y^{2} - 6x + 5 = 0$ If the area of the region $\{(x, y): -1 \le x \le 1, 0 \le y \le a + e^{|x|} - e^{-x}, a > 0\}$ is $\frac{e^2 + 8e + 1}{e}$, then the value 16. of a is: 1)8 2)53)74)6 Key: 2 Sol: $\left| \int_{-1}^{1} \left(a + e^{|x|} - e^{-x} \right) dx \right| = \left| \int_{-1}^{0} \left(a + e^{-x} - e^{-x} \right) dx + \int_{0}^{1} \left(a + e^{x} - e^{-x} \right) dx \right|$ $= \left| a(1) + (ax + e^{x} + e^{-x})^{1} \right|$ $= \left| a + a + e + e^{-1} - 2 \right| = \left| 2a + e + \frac{1}{a} - 2 \right|$ $= \left| 2a + \frac{e^2 - 2e + 1}{e} \right| = \left| \frac{e^2 + 8e + 1}{e} \right|$ $2a = \left| \frac{-10e}{e} \right|$ a = 5The distance of the line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ from the point (1,4,0) along the line 17. $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{2}$ 1) $\sqrt{14}$ $2)\sqrt{15}$ $3)\sqrt{17}$ $4)\sqrt{13}$

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 23-Jan-2025 Shift-2

Key:1 Sol: $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3} = k$ A(k,2k+2,3k-3) lies on first line $\frac{k-2}{2} = \frac{2k-4}{3} = \frac{3k-6}{4}$ $\frac{k-2}{2} = \frac{2k-4}{3} \Longrightarrow 3k-6 = 4k-4$ $\therefore k = 2 \therefore A = (2, 6, 3), B = (1, 4, 0)$ $AB = \sqrt{1+4+9} = \sqrt{14}$ Let the range of function $f(x) = 6 + 16\cos x \cdot \cos\left(\frac{\pi}{3} - x\right) \cdot \cos\left(\frac{\pi}{3} + x\right) \cdot \sin 3x \cdot \cos 6x, x \in R$ be $[\alpha, \beta]$. 18. Then the distance of the point (α, β) from the line 3x + 4y + 12 = 0 is: 1)8 2)11 3)9 (4)10Key: 2 Sol: $f(x) = 6 + 4\cos 3x \sin 3x \cos 6x$ $f(x) = 6 + \sin 12x$ Range = [5,7] $(\alpha,\beta) = (5,7)$ \perp distance $\frac{15+28+12}{5} = 11$ $\lim_{x \to \infty} \frac{(2x^2 - 3x + 5)(3x - 1)^{\frac{1}{2}}}{(3x^2 + 5x + 4)\sqrt{(3x + 2)^x}}$ is equal to: 19. $2)\frac{2}{\sqrt{3}e} \qquad 3)\frac{2e}{3}$ $1)\frac{2e}{\sqrt{2}}$ $(4)\frac{2}{3\sqrt{e}}$ Key:4 Sol: $\lim_{x \to \infty} \frac{2}{3} \cdot \frac{(3x-1)^{x/2}}{(3x+2)^{x/2}} = \frac{2}{3} \lim_{x \to \infty} \left(\frac{3x-1}{3x+2}\right)^{x/2} = \frac{2}{3} e^k$ Where k = $\lim_{x \to \infty} \frac{x}{2} \left[\frac{3x-1}{3x+2} - 1 \right]$ $= \lim_{x \to \infty} \frac{x}{2} \left[\frac{-3}{3x+2} \right] \qquad = \lim_{x \to \infty} \frac{-3x}{(3x+2)2} \qquad = \frac{-1}{2}$ Limit = $\frac{2}{3}e^{-1/2} = \frac{2}{3\sqrt{a}}$ Let $A = \{(x, y) \in R \times R : |x + y| \ge 3\}$ $B = \{(x, y) \in R \times R : |x| + |y| \le 3\}$. If 20. $C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\}, then \sum_{(x,y) \in C} |x+y| \text{ is:}$ 1) 18 2) 24 3) 12 4) 15 Key:3

<u> Sri Chaitanya IIT Academy., India</u>

2025 Jee-Main 23-Jan-2025 Shift-2 Sol: $|x+y| \ge 3$ $-3 \le x + y$ or $x + y \ge 3$ $x + y + 3 \ge 0$ or $x + y - 3 \le 0$ $|x| + |y| \le 3$ (0.3)0,-3) (x, y)=(3,0),(-3,0),(0,3),(0,-3)Required sum =12SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.. The variance of the numbers 8,21,34,47,....,320 is 21. Key: 8788 Mean $=\frac{8+21+34+\ldots+320}{25}=\frac{25}{2}\left(\frac{8+320}{25}\right)=164$ Sol: Variance = $\frac{8^2 + 4^2 + \dots + 320^2}{25} - 164 = 8788$ The roots of the quadratic equation $3x^2 - px + q = 0$ and 10^{th} and 11^{th} terms of an arithmetic 22. progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then q-2p is equal to Key: 474 Sol: $S_{11} = \frac{11}{2} (2a + (11-1)d) = 88 \Longrightarrow a + 5d = 8$ $a = 8 - 5\left(\frac{3}{2}\right) = \frac{1}{2}$ $T_{10} = a + 9d = \frac{1}{2} + 9 \cdot \frac{3}{2} = \frac{1 + 27}{2} = 14$ $T_{11} = a + 10d = \frac{1}{2} + 10.\frac{3}{2} = \frac{31}{2}$

🗟 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 23-Jan-2025 Shift-2

$$S.O.R = 14 + \frac{31}{2} = \frac{p}{3} \quad P.O.R = 14 \cdot \frac{31}{2} = \frac{q}{3}$$

$$\frac{p}{3} = \frac{59}{2}, q = 7.31.3 \quad p = \frac{59.3}{2} \quad q = 651 \quad q-2p = 651 - 59 \times 3 = 474$$
23. Let α, β be the roots of the equation $x^2 - ax - b = 0$ with $Im(\alpha) < Im(\beta)$. Let $p_n = \alpha^n - \beta^n$. If $p_3 = -5\sqrt{7}i, p_4 = -3\sqrt{7}i, p_5 = 11\sqrt{7}i$ and $p_6 = 45\sqrt{7}i$, then $|\alpha^4 + \beta^4|$ is equal to _______.
Key: 31
Sol: $p_5 - ap_4 - bp_3 = 0$
 $p_6 - ap_5 - bp_4 = 0$
 $11\sqrt{7}i + a3\sqrt{7}i + b5\sqrt{7}i = 0 \Rightarrow 11 + 3a + 5b = 0 - (1)$
 $45\sqrt{7}i + 11\sqrt{7}ia + 3\sqrt{7}ib = 0 \Rightarrow 45 - 11a + 3b = 0 - (2)$
Solving (1) ×(2), $a = 3, b = -4 \Rightarrow x^2 - 3x + 4 = 0$
 $\alpha^2 + \beta^2 = 9 - 8 = 1 \qquad \alpha + \beta = 3 \qquad \alpha\beta = 4$
 $\alpha^2 + \beta^4 = (\alpha^2 + \beta^2) - 2\alpha^2\beta^2 = -31$
 $|\alpha^4 + \beta^4| = 31$

24. The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines 3x - y = 0 and $x + \lambda y = 4$, are λ_1 and λ_2 , $\lambda_1 < \lambda_2$, then $12\lambda_1 + 29\lambda_2$ is equal to_____

Key:15

Sol: Focus
$$S(-3,0)$$

Center C= $(-3,0)$, radius =5
P.O.I=P= $\left[\frac{4}{1+3\lambda}, \frac{12}{1+3\lambda}\right]$, $cp = 5$
 $\sqrt{\left(\frac{4}{1+3\lambda}+3\right)^2 + \left(\frac{12}{1=3\lambda}\right)^2} = 5$
 $\lambda_1 = \frac{-7}{6} \lambda_2 = 1$ $12\lambda_1 + 29\lambda_2 = -14 + 29 = 15$

25. The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is _____

Key: 17280

Sol: All the boys together =5! .5! No boys sit together = 4!.5! Sum =5!.5!+ 4!.5!=17280

<u>® Sri Chaitanya IIT Academy., India.</u> PHYSICS

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

26. Using the given P-V diagram, the work done by an ideal gas along the path ABCD is

<u> 🙊 Sri Chaitanya IIT Academy., India.</u>

(D) Torsional constant

<u>2025 Jee-Main 23-Jan-2025 Shift-2</u> (IV) [L²A]

Choose the correct answer from the options given below

- 1) A-IV, B-III, C-I, D-II
- 2) A-III, B-II, C-IV, D-I
- 3) A-II, B-I, C-III, D-IV
- 4) A-I, B-IV, C-II, D-III

Key: 2

Sol: A) Permeability of free space = $[MLT^{-2}A^{-2}]$

B) Magnetic field = $[MT^{-2}A^{-1}]$

C) Magnetic moment = $[L^2 A]$

D) Torsional constant = $[ML^2T^{-2}]$

29. Water flows in a horizontal pipe whose one end is closed with a valve. The reading of the pressure gauge attached to the pipe is P_1 . The reading of the pressure gauge falls to P_2 when the valve is opened. The speed of water flowing in the pipe is proportional to

1)
$$P_1 - P_2$$
 2) $\sqrt{P_1 - P_2}$ 3) $(P_1 - P_2)^2$ 4) $(P_1 - P_2)^4$

Key: 2

Sol: $P + \rho gh + \frac{1}{2}\rho v^2 = \text{constant}$

$$P_1 = P_2 + \frac{1}{2}\rho v^2$$
 $P_1 - P_2 = \frac{1}{2}\rho v^2$ $\therefore v \alpha \sqrt{P_1 - P_2}$

30. A galvanometer having a coil of resistance 30Ω need 20mA of current for full-scale defection. If a maximum current of 3A is to be measured using this galvanometer,

the resistance of the shunt to be added to the galvanometer should be $\frac{30}{X}\Omega$, where X is

1) 298 2) 596 3) 447 4) 149

Key:4

Sol: $S = \frac{G}{\frac{i}{ig} - 1}$

🧟 Sri	Chaitanya IIT Academy.,	India.			2025 Jee-Main	23-Jan-2025 Shift-2
	$\frac{30}{X} = \frac{30}{\left(\frac{3}{20 \times 10^{-3}} - \right)}$	$x = \frac{1}{20}$	$\frac{3}{\times 10^{-3}} - 1$	$x = \frac{300}{2}$	-1 = 149	
31.	What is the current	nt through the l	pattery in th	ne circuit s	hown below?	
			20 Ω 			
	1) 1.0A	2) 0.5A	3) 1.	5A	4) 0.25A	
Key:	2					
Sol:	$\mathbf{R}_{eq} = \frac{R_1 R_2}{R_1 + R_2}$					
	$=\frac{20\times 20}{20+20}=10 \ \Omega$					
	V = iR					
	$i = \frac{V}{R} = \frac{5}{10} = 0.5A$					
32.	A concave mirror focal length in the	of focal length e liquid will be	n f in air i	is dipped in	n a liquid of refl	ective index μ . Its
	1. μf	2. <i>f</i>	3. $\frac{\mu}{f}$		$4. \ \frac{f}{(\mu-1)}$	
Key:	2					
Sol :	Since refraction mirrors an	does not take p d plane mirrors	place in cas	e reflecting	g surfaces as in o	case of curved
33.	The refractive inc deviation is	lex of the mater s equal to the a	rial of a gla ngle of the	ass prism i prism. Wh	s $\sqrt{3}$. The angle at is the angle o	e of minimum f the prism?
	1) 60°	2) 48 [°]	3) 58	8 ⁰	4) 50 [°]	
Key	: 1					
Jee-N	Nain-2025_Jan Sessio	n				14 Page

👧 Sri Chaitanya IIT Academy., India. 2025 Jee-Main 23-Jan-2025 Shift-2 Sol: $\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ $\therefore \delta_m = A$ as given data $\sqrt{3} = \frac{\sin\left(\frac{A+A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ $\sqrt{3} = \frac{\sin A}{\sin \frac{A}{2}}$ $\sqrt{3} = \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{\sin\frac{A}{2}}$ $\sqrt{3} = \cos\frac{A}{2}, \qquad \cos 30^\circ = \cos\frac{A}{2}$ $\frac{A}{2} = 30^{\circ} \implies A = 60^{\circ}$

34. The width of one of the two slits in Young's double slit experiment is d while that of the other slit is xd. If the ratio of the maximum to the minimum intensity in the interference pattern on the screen is 9:4 then what t is the value of x? (Assume that the filed strength varies according to the slit width) 1) 2 2) 5 3) 4 4) 3

Key : 2

Sol:
$$\frac{I_{\max}}{I_{\min}} = \left(\frac{I_1 + I_2}{I_1 - I_2}\right)^2 \qquad (\therefore I\alpha w)$$
$$\frac{9}{4} = \left(\frac{xd + d}{xd - d}\right)^2$$
$$\frac{3}{2} = \frac{d(x+1)}{d(x-1)}$$
$$\therefore 3x - 3 = 2x + 2$$
$$x = 5$$

🧟 Sri C	haitanya IIT Academy., India.		2025 Jee-Main 23-Jan-2025 Shift-2		
35.	A plane electromagnetic wave of free	equency 20 MHz	travels in free space along the $+x$		
	direction. At a particular point in space and time, the electric filed vector of the wave				
	$E_y = 9.3 Vm^{-1}$. Then, the magnetic field vector of the wave at that point is				
	1) $B_z = 3.1 \times 10^{-8} T$	2) $B_z = 9.3 \times 10^{-10}$	⁸ T		
	3) $B_z = 1.55 \times 10^{-8} T$	4) $B_z = 6.2 \times 10$	^{-8}T		
Key :	1				
Sol :	$E_0 = B_0 C$				
	$B_0 = \frac{E_0}{C} = \frac{9.3}{3 \times 10^8} = 3.1 \times 10^{-8} T$				
36.	A ball having kinetic energy KE is What will be the kinetic energy	projected at an a of ball at the high	ngle of 60 [°] from the horizontal. hest point of its flight?		
	1) $\frac{(KE)}{4}$ 2) $\frac{(KE)}{2}$	3) $\frac{(KE)}{16}$	4) $\frac{(KE)}{8}$		
Key :	1				
Sol :	$KE = \frac{1}{2}mv^2$				
	$KE' = \frac{1}{2}mv_x^2 = \frac{1}{2}mv^2\cos^2\theta$				
	$= KE \times \cos^2 60^\circ$				
	$KE' = \frac{KE}{4}$				
37.	The energy of a system is given as The errors in the measurement maximum percentage error in t	$E(t) = \alpha^3 e^{-\beta t}$, where α and t are 1.2 he energy is	here t is the time and $\beta = 0.3s^{-1}$. % and 1.6 %, respectively. At t=5s,		
	1) 11.6% 2) 8.4%	3) 4%	4) 6%		
Key :	4				
Sol :	$\frac{\Delta E}{E} = 3 \left(\frac{\Delta \alpha}{\alpha} \right) + \beta \left(\frac{\Delta t}{t} \right) t$				
	$= 3(1.2\%) + 0.3 \times 1.6\% \times 5 = 5.8$	$5\% \simeq 6\%$			
Jee-Mo	ain-2025_Jan Session		16 Page		

<u> Sri Chaitanya IIT Academy., India.</u> 2025 Jee-Main 23-Jan-2025 Shift-2 The equation of a transverse wave travelling along a string is 38. $y(x,t) = 4.0 \sin[20 \times 10^{-3} x + 600t]mm$, where x is in mm and t is in second. The velocity of the wave is: 2) + 60 m/s4) +30 m/s1) -60 m/s 3) - 30 m/sKey: 3 Sol: $V = -\frac{\omega}{k} = -\frac{600 \times 10^{-3}}{20 \times 10^{-3}}$ V = -30m/s39. If a satellite orbiting the Earth is 9 times closer to the Earth than the Moon, what is the time period of rotation of the satellite? Given rotational time period of Moon =27 days and gravitational attraction between in satellite and the moon in neglected 3) 3 days 1) 1 day 2) 81 days 4) 27 days Key: 1 Sol: $T\alpha R^{\frac{3}{2}}$ $\frac{T_1}{T_2} = \left(\frac{R_1}{R_2}\right)^{\frac{3}{2}}$ $\frac{T_m}{T_c} = \left(\frac{R}{R/9}\right)^{\frac{3}{2}} \qquad \frac{T_m}{T_c} = \left(3\right)^3$ $T_1 = 1 \text{ day}$ A circular disk of radius R meter and mass M kg is rotating around the axis perpendicular 40. to the disk. An external torque is applied to the disk such that $\theta(t) = 5t^2 - 8t$, where $\theta(t)$ the angular position of the rotating disc as a function of time t. is How much power s delivered by the applied torque, where t=2s? 1) 108 MR^2 2) 72 MR^2 3) 60 MR^2 4) 8 MR^2 Key: 3 Sol: $\omega = 10t - 8 = 10(2) - 8 = 12rad / s$ $\alpha = 10rad / s^2$ $\tau = I\alpha = \frac{MR^2}{2} \times 10 = 5MR^2$ $P = \tau . \omega = 5MR^2 (12) \qquad P = 60MR^2$ Jee-Main-2025_Jan Session

17 | Page

🧟 Sri	Chaitanya IIT Academy., India. 2025 Jee-Main 23-Jan-2025 Shift-2
41.	Water of mass m gram is slowly heated to increase the temperature form T_1 to T_2 . The
	change in entropy of the water, given specific heat of water is $1Jkg^{-1}K^{-1}$, is :
	1) $m(T_2 - T_1)$ 2) zero 3) $m \ln\left(\frac{T_2}{T_1}\right)$ 4) $m \ln\left(\frac{T_1}{T_2}\right)$
Key:	3
Sol:	$\Delta S = \frac{\Delta Q}{T} = ms \frac{dT}{T} = m \frac{dT}{T} \qquad (\therefore S = 1) \qquad ds = \int_{T_1}^{T_2} m \frac{dT}{T} = m \ln\left(\frac{T_2}{T_1}\right)$
42.	Two point charge $-4\mu c$ and $4\mu c$, constituting an electric dipole, are placed at
	(-9,0,0) cm and (9,0,0) cm in a uniform electric field of strength $10^4 NC^{-1}$. The work done on the dipole in rotating it form the equilibrium through 180^0 is
	1) 14.4 mJ 2) 16.4mJ 3) 12.4 mJ 4) 18.4 mJ
Key	:1
Sol :	
	$P = 2l \times q = 18 \times 10^{-2} \times 4 \times 10^{-6}$
	$E = 10^4$
	$W = -PE\left(\cos\theta_2 - \cos\theta_1\right)$
	$= -18 \times 10^{-2} \times 4 \times 10^{-6} \times 10^{4} (-1 - 1) = 14.4 mJ$
43.	Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R)
	Assertion (A): The binding energy per nucleon is found to be practically independent of the atomic number A, for nuclei with mass numbers between 30 and 170
)	Reason (R): Nuclear force is along range

In the light of the above statements, choose the correct answer from the options given below:

- 1. (A) is false but (R) is true
- 2. Both (A) and (R) are true (R) is the correct explanation of (A)
- 3. Both (A) and (R) are true (R) is NOT the correct explanation of (A)
- 4. (A) is true but (R) is false

👧 Sri Chaitanya IIT Academy., India.

Key: 1

Sol: Binding energy per nucleon is almost same for nuclei of mass number ranging 30 to 170.

44. In photoelectric effect an Em-wave is incident on a metal surface and electrons are ejected from the surface. If the work function of the metal is $2.14 \ eV$ and stopping

potential is 2V, what is the wavelength of the Em-wave?

(Given hc = 1242 eVnm where h is the Planck's constant and c is the speed of light in vaccum)

1) 600nm 2) 400nm 3) 200nm 4) 300nm

Key:4

Sol:

$$KE = \frac{hc}{\lambda} - \phi$$

$$eV_0 = \frac{hc}{\lambda} - \phi$$

$$1.6 \times 10^{-19} \times 2 = \frac{1242 \times 1.6 \times 10^{-19} \times 10^{-9}}{\lambda} - 2.14 \times 1.6 \times 10^{-19}$$

$$2 = \frac{1242}{\lambda} \times 10^{-9} - 2.14$$

$$\lambda = \frac{1242}{4.14} nm = 300 nm$$

45. A massless spring gets elongated by amount x_1 under a tension of 5N. Its elongation is x_2 under the tension of 7N. For the elongated of $(5x_1 - 2x_2)$, the tension in the spring will be

1) 20N 2) 15 N 3) 39 N 4) 11 N

Key:4

Sol:

 $F \alpha x$ F = Kx $5 = Kx_1$ $7 = Kx_2$ $T = K (5x_1 - 2x_2)$ $T = 5Kx_1 - 2Kx_2$ $T = 5 \times 5 - 2 \times 7$ T = 11N

2025 Jee-Main 23-Jan-2025 Shift-2

Sol: $c = 2.5\mu F, k = 1, i_d = 0.25mA \frac{dv}{dt} = ?$ $i_d = c \frac{dv}{dt} \Rightarrow 0.25 \times 10^{-3} = 2.5 \times 10^{-6} \times \frac{dv}{dt}$ $25 \times 10^{-5} = 25 \times 10^{-7} \times \frac{dv}{dt}$ $\frac{dv}{dt} = 100V$ 49. A satellite of mass $\frac{M}{2}$ is revolving around earth in a circular orbit at a height of $\frac{R}{2}$ from earth surface. The angular momentum of the satellite is $M \sqrt{\frac{GMR}{x}}$. The value of x is _____ where M and R are the mass and radius of earth , respectively. (G is the gravitational constant)

Key: 3

👧 Sri Chaitanya IIT Academy., India.

Sol: Angular moment of revolving satellite around earth is

$$L = m\sqrt{GM(R+h)}, L = \frac{M}{2}\sqrt{GM\left(R+\frac{R}{3}\right)},$$
$$L = \frac{M}{2}\sqrt{GM\left(\frac{4R}{3}\right)}, L = M\sqrt{\frac{GM}{4}\left(\frac{4R}{3}\right)}, L = M\sqrt{\frac{GMR}{3}}$$

50. In a series LCR circuit, a resistor of 300Ω , a capacitor of 25 *nF* and an inductor of 100 *mH* are used. For maximum current in the circuit, the angular frequency of the ac source is _____ ×10⁴ radians s^{-1} .

Key: 2

Sol: For maximum current in LCR circuit minimum impedance (i.e Resonance condition)

$$X_{L} = X_{C}$$

$$\omega L = \frac{1}{\omega C}$$

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{100 \times 10^{-3} \times 25 \times 10^{-9}}}$$

$$\omega = \frac{1}{\sqrt{2500 \times 10^{-12}}} = \frac{1}{50 \times 10^{-6}} = \frac{100}{50} \times 10^{4}$$

$$\omega = 2 \times 10^{4} \, rad \, / s$$

<u> Sri Chaitanya IIT Academy., India.</u> 2025 Jee-Main 23-Jan-2025 Shift-2 Consider a binary solution of two volatile liquid components 1 and 2. x_1 and y_1 are the 54. mole fractions of component 1 in liquid and vapour phase, respectively. The slope and intercept of the linear plot of $\frac{1}{r}$ vs $\frac{1}{v}$ are given respectively as: 1) $\frac{P_2^0}{P^0}$, $\frac{P_2^0 - P_1^0}{P^0}$ 2) $\frac{P_1^0}{P^0}$, $\frac{P_2^0 - P_1^0}{P_2^0}$ 3) $\frac{P_1^0}{P_2^0}$, $\frac{P_1^0 - P_2^0}{P_2^0}$ 4) $\frac{P_2^0}{P_2^0}$, $\frac{P_1^0 - P_2^0}{P_2^0}$ Key: (2)Sol: $P_1 = P_1^0 x_1$ liquid phase $P_1 = P_T^0 y_1$ Vapour phase $\therefore P_T y_1 = P_1^0 x_1$ $\frac{P_T}{y_1} = \frac{P_1^0}{y_1}$ $P_T = P_1^0 x_1 + P_2^0 x_2 \Longrightarrow P_1^0 x_1 + P_2^0 (1 - x_1) \Longrightarrow P_1^0 x_1 + P_2^0 - P_2^0 x_1$ $P_{T} = P_{2}^{0} + x_{1} \left(P_{1}^{0} - P_{2}^{0} \right) \qquad \frac{P_{2}^{0} + x_{1} \left(P_{1}^{0} - P_{2}^{0} \right)}{x_{1}} = \frac{P_{1}^{0}}{y_{1}} \qquad \frac{P_{2}^{0}}{x_{1}} + \frac{x_{1} \left(P_{1}^{0} - P_{2}^{0} \right)}{x_{1}} = \frac{P_{1}^{0}}{y_{1}}$ dividing all terms with P_2^0 $\frac{P_2^0}{r} \times \frac{1}{P_1^0} + \frac{x_1 (P_1^0 - P_2^0)}{r \times P_2^0} = \frac{P_1^0}{v \times P_2^0}$ $\frac{1}{x_1} + \frac{P_1^0 - P_2^0}{P_2^0} = \frac{P_1^0}{P_2^0} \times \frac{1}{v_1}, \quad \frac{1}{x_1} = \frac{P_1^0}{P_2^0} \times \frac{1}{v_1} + \frac{P_2^0 - P_1^0}{P_2^0}$ Slope = $\frac{P_1^0}{P_2^0}$, Intercept = $\frac{P_2^0 - P_1^0}{P_2^0}$ Consider the reaction $X_2Y(g) \rightleftharpoons X_2(g) + \frac{1}{2}Y_2(g)$ 55. The equation representing correct relationship between the degree of dissociation (x) of $X_2Y(g)$ with its equilibrium constant Kp is Assume x to be very very small. 1) $x = \sqrt[3]{\frac{2Kp^2}{p}}$ 2) $x = \sqrt[3]{\frac{Kp}{2p}}$ 3) $x = \sqrt[3]{\frac{2Kp}{p}}$ 4) $x = \sqrt[3]{\frac{Kp}{p}}$ Key: (1) $x_2 y \rightleftharpoons x_2 + \frac{1}{2} y_2$ Sol: Initial 1 0 Dissociated α α $\frac{\alpha}{2}$ $1 - \alpha \rightleftharpoons \alpha \quad \frac{\alpha}{2}$ Left Total moles = $\left(1 + \frac{\alpha}{2}\right)$

<u>@Sri</u> 58	<u>Chaitanya IIT Academy., India.</u> Given below are two statements:	2025 Jee-Main_23-Jan-2025 Shift-2		
50.	Statement (I) : The boiling points of	f alcohols and phenols increase with increase in the		
	number of C-atoms.			
	Statement (II) : The boiling points	of alcohols and phenols are higher in comparison to		
	other class of compounds such as e	thers, haloalkanes.		
	In the light of the above statements, choose the correct answer from the options given			
	below:			
	1) Statement I is false but Statemer	at II is true		
	2) Both Statement I and Statement	II are false		
	3) Both Statement I and Statement	II are true		
	4) Statement I is true but Statement	t II is false		
Key:	(3)			
Sol:	Statement-I : The boiling points of alcohols and phenols increases with increase in the			
	number of carbon atoms (Increased in Vanderwaals forces)			
	Statement-II : The high boiling points of alcohols and phenols are higher in comparison			
	to other class of compounds such a	s ethers, haloalkanes, due to presence of		
	intermolecular hydrogen bonding in	n them which is lacking in ethers & Hydrocarbons		
59.	Identify A, B and C in the given be	low reaction sequence		
	$A \xrightarrow{\text{HNO}_3} \text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{H}_2\text{SO}_4}$	$\rightarrow \mathbf{B} \frac{(1) \text{Ammonium}}{(2) \text{Acetic acid}}$		
		(3) $K_2 CrO_4$		
		Service Contract of		
		С		
		Yellow ppt		
	1) $PbCl_2, Pb(SO_4)_2, PbCrO_4$	2) PbCl ₂ ,PbSO ₄ ,PbCrO ₄		
	3) $PbS,PbSO_4,Pb(CH_3COO)_2$	4) PbS,PbSO ₄ ,PbCrO ₄		
	· 2			

Key: (4)

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 23-Jan-2025 Shift-2 $PbS + HNO_3 \rightarrow Pb(NO_3)_2 + NO + S + H_2O$ Sol: (A) $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3$ $PbSO_{4} + 2CH_{3}COONH_{4} \xrightarrow{CH_{3}COOH} (CH_{3}COO)_{2} pb + (NH_{4})_{2} SO_{4}$ Ammonium acetate $K_2 Cr_2 O_7$ 2PbCrO₄ + 2CH₃COOK+2CH₃COOH (lead chromate) С Consider the following reactions 60. $K_2Cr_2O_7 \xrightarrow{KOH} [A] \xrightarrow{H_2SO_4} [B] + K_2SO_4$ The products [A] and [B], respectively are : 1) K_2CrO_4 and $K_2Cr_2O_7$ 2) K_2CrO_4 and CrO 3) $K_2 CrO_4$ and Cr_2O_3 4) $K_2Cr(OH)_6$ and Cr_2O_3 Key: (1) Sol: $K_2Cr_2O_7 \xrightarrow{KOH} A$ $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4(A) + H_2O$ Potassium chromate $K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7(B) + K_2SO_4 + H_2O_4$ Potassium dichromate The α – Helix and β – Pleated sheet structures of protein are associated with its: 61. 1) primary structure 2) secondary structure 3) quaternary structure 4) tertiary structure Key: (2) α – Helix and β – pleated sheet structures of protein are associated with secondary Sol: structure pH of water is 7 at 25° C. If water is heated to 80° C., it's pH will: 62. 1) Remains the same 2) Increase 3) Decrease 4) H^+ concentration increases, OH^- concentration decreases Key: (3)

👧 Sri Chaitanya IIT Academy., India. 🗌

2025 Jee-Main 23-Jan-2025 Shift-2

Sol: At 25° C K_w= 10^{-14} M² $\left[H^{+} \right] = \left[OH^{-} \right] = 10^{-7} M$ $P^{H} = -\log(10^{-7}) = 7$ As the temperature increases, K_w increases $\left[H^+\right]$ concentration increases, P^H decreases When a non-volatile solute is added to the solvent, the vapour pressure of the solvent 63. decreases by 10 mm Hg. The mole fraction of the solute in the solution is 0.2. What would be the mole fraction of the solvent if decrease in vapour pressure is 20 mm of Hg? 2)0.61) 0.43)0.84) 0.2Key: (2) Sol: $\frac{P^0 - P}{P^0} = X_{Solute} \quad \text{Given } P^0 - P = 10 \text{ mm of Hg}$ $X_{Solute} = 0.2$ $\frac{10}{P^0} = 0.2$ $\therefore P^0 = 50$ decrease in V.P. = 20 mm of Hg, $P^0 = 50$ $\therefore \frac{20}{50} = X_{solute}$ $x_{solute} = 0.4$ $x_{solvent} = 1 - 0.4 = 0.6$ Identify the products [A] and [B], respectively in the following reaction: 64. C1(i) NaOH,623K, 300 atm $\rightarrow [A] \xrightarrow{\text{Na}_2\text{Cr}_2\text{O}_7} H_2\text{SO}_4 [B]$ $(ii) H^+$ OH OH O^-Na^+ , [B] [A] [A] , [B] 1) 2) OH , [B] [A] , [B] [A] 4) 3) Key: (2) Jee-Main-2025_Jan Session 29 | Page

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 23-Jan-2025 Shift-2

31 | Page

<u> Sri Chaitanya IIT Academy., India.</u>

2025	Jee-Main	23-Jan-2025	Shift-2

Match List-I with List-II.					
	List-I		List-II		
(A)	Bronze	(I)	Cu, Ni		
(B)	Brass	(II)	Fe, Cr, Ni, C		
(C)	UK silver coin	(III)	Cu, Zn		
(D)	Stainless steel	(IV)	Cu, Sn		

Choose the correct answer from the options given below

1) (A) - (IV), (B) - (II), (C) - (III), (D) - (I)

3)
$$(A) - (IV), (B) - (III), (C) - (I), (D) - (II)$$

4)
$$(A) - (III), (B) - (I), (C) - (IV), (D) - (II)$$

Key: (3)

69.

Sol: Bronze: Cu, Sn

Brass: Cu, Zn

UK silver coin: Cu, Ni

Stainless steel: Fe,Cr, Ni, C

70. Given below are two statements about X-ray spectra of elements:

Statement (I): A plot of \sqrt{v} (v = frequency of X-rays emitted) vs atomic mass is a straight line.

Statement (II): A plot of v (v = frequency of X-rays emitted) vs atomic number is a straight line.

In the light of the above statements, choose the correct answer from the options given below:

1) Both Statement I and Statement II are true

```
2) Both Statement I and Statement II are false
```

3) Statement I is true but Statement II is false

4) Statement I is false but Statement II is true

Key: (2)

Sol: A plot of \sqrt{v} (when v is frequency of x-rays emitted) against atomic number (x) is straight line .

: Statement I & Statement II are false

SECTION-II (NUMERICAL VALUE TYPE)

This section contains **5 Numerical Value Type Questions**. The Answer should be within **0 to 9999**. If the Answer is in **Decimal** then round off to the **Nearest Integer** value (Example i.e. If answer is above **10** and less than **10.5** round off is **10** and If answer is from **10.5** and less than **11** round off is **11**).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

71. 0.01 mole of an organic compound (X) containing 10% hydrogen, on complete

combustion produced 0.9 g H_2O . Molar mass of (X) is _____ g mol⁻¹.

Key: (100)

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 23-Jan-2025 Shift-2 Sol: $\%H = \frac{2}{18} \times \frac{wt \ of \ H_2O \ formed}{wt \ of \ organic \ compound} \times 100$ $10 = \frac{2}{18} \times \frac{0.9}{wt.of \ organic \ compound} \times 100$ \therefore wt.of organic compound = 1 gram Given 0.01 mole of organic compound = 1 g1 mole of organic compound (Molecular weight) = 100 gThe bond dissociation enthalpy of $X_2 \Delta H^0_{bond}$ calculated from the given data is 72. kJ mol⁻¹. (Nearest Integer) $M^+X^-(s) \rightarrow M^+(g) + X^-(g) \Delta H^0_{lattice} = 800 \text{ kJ mol}^{-1}$ $M(s) \rightarrow M(g) \Delta H_{sub}^0 = 100 \text{ kJ mol}^{-1}$ $M(g) \rightarrow M^+(g) + e^-(g) \Delta H^0_i = 500 \text{ kJ mol}^{-1}$ $X(g) + e^{-}(g) \rightarrow X^{-}(g) \Delta H^{0}_{eg} = -300 \text{ kJ mol}^{-1}$ $M(s) + \frac{1}{2}X_2(g) \rightarrow M^+X^-(s) \Delta H_f^0 = -400 \text{ kJ mol}^{-1}$ [Given: M^+X^- is a pure ionic compound and X forms a diatomic molecule X_2 in gaseous state] Key: 200 Sol: $M_{(s)} + \frac{1}{2}x_{2}(g)$ $M^{+}x^{-}{}_{(s)}$ + 400 Sublimation $\frac{BE}{2}$ Lattice Energy $\mathbf{M}^{+}_{(g)}$ $\mathbf{X}^+(g)$ $M_{(g)}$ Electron gain enthalpy Ionisation Potential $\Delta H_f(M^+X^-) = \Delta H_{Sub} + I.P. + \frac{BE}{2} + Eg + LE$ $-400 = 100 + 500 + \frac{BE}{2} + (-300) + (-800)$ $\therefore B.E = 200 \text{ KJ} / mol$ Consider the following sequence of reactions. 73. (B) OH $\begin{array}{c} 2 \quad (i) \text{ NaNO}_2, \text{HCl} \\ & \underbrace{0-5^0 \text{ C}}_{(ii) \text{ HCl dil.}}, \end{array}$ (Molecular formula) ,NaOH C14H14N2O2 (i) NaOH (ii) H₃CCH₂Br Ο CH₂ (C) CH₃ (Molecular formula) $(C_{16}H_{18}N_{2}O_{2})$ Total number of sp³ hybridized carbon atoms in the major product C formed is

 $\begin{array}{c} \mathrm{CH}_3 - \mathrm{C} - \mathrm{CH}_3 \,, \mathrm{CH}_3 - \mathrm{C} - \mathrm{OH} & \text{and} & \mathrm{CH}_3 - \mathrm{C} - \mathrm{CH}_2 \mathrm{CH}_2 - \mathrm{C} - \mathrm{OH} \\ \parallel & \parallel & \parallel & \parallel \end{array}$ ∥ 0 0 О 0

The total number of σ bonds present in the compound 'X' is _____

Key: (27)

74.

Sol:

ALL INDIA RANK

RANK

JEE MAIN 2024

K C BASAVA REDDY APPL.No. 240310618179*

POWE ORDIN

PROUDLY ACHIEVED **22 RANKS IN TOP 1000**

SEIZES **4 RANKS** IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 **ALL INDIA OPEN CATEGORY**

SCAN THE QR CODE