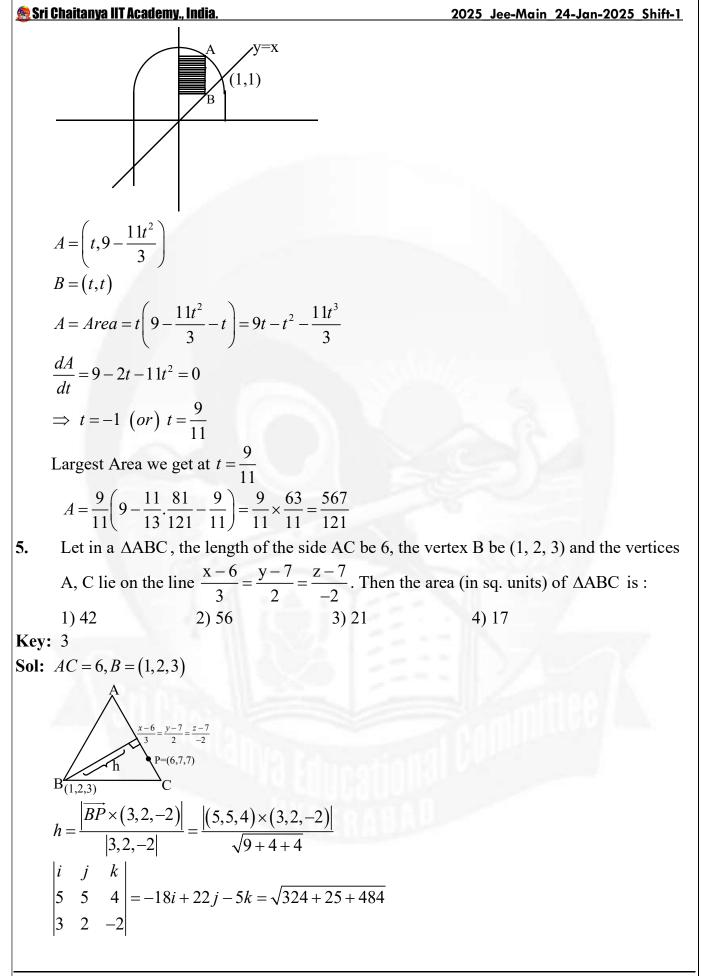


SRICHAITANYA NATION'S 1STCHOICE FOR IIT-JEE SUCCESS

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY


JEE MAIN (JAN) 2025 – SHIFT 1 24-01-2025

Sri Chaitanya IIT Academy., India. A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON Central Office – Madhapur – Hyderabad 2025 Jee-Main_24-Jan-2025_Shift-01 **MATHEMATICS** Max Marks: 100 (SINGLE CORRECT ANSWER TYPE) This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. 1. For a statistical data x_1, x_2, \dots, x_{10} of 10 values, a student obtained the mean as 5.5 1. and $\sum_{i=1}^{10} x_i^2 = 371$. He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is 2)9 3) 5 1)7(4) 4**Key:** 1 **Sol:** $\bar{x} = 5.5$ New mean $(\bar{x}) = \frac{55 - 4 - 5 + 6 + 8}{10} = 6$ New variance = $\frac{371 - 4^2 - 5^2 + 6^2 + 8^2}{10} - 36 = 43 - 36 = 7$ Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$ and \vec{c} be three vectors such that \vec{c} is coplanar with 2. \vec{a} and \vec{b} . If the vector \vec{c} is perpendicular to \vec{b} and \vec{a} . $\vec{c} = 5$, then $|\vec{c}|$ is equal to 2) $\sqrt{\frac{11}{6}}$ 3) $\frac{1}{3\sqrt{2}}$ 1) 184) 16 **Key:** 2 **Sol:** $\vec{c} = x(-i+2j+3k) + y(3i+j-k)$ $\vec{c}.\vec{b}=0 \implies x(3+2-3)+y(9+1+1)=0$ $\Rightarrow 2x+11y=0$ $\rightarrow \oplus$ $\Rightarrow y = \frac{-2}{11}x$ $\vec{c} \cdot \vec{c} = 5 \implies x(1+4+9) + y(3+2-3) = 5$ $\Rightarrow 14x + 2y = 5$ $14x + 2\left(\frac{-2}{11}x\right) = 5$

Jee-Main-2025_Jan Session1 | Page

<u> Sri</u>	Chaitanya IIT Academy., India.		2025_Jee-Main_24-Jan-2025_Shift-1
	$\Rightarrow 154x - 4x = 55$	$x = \frac{55}{150} = \frac{11}{30}$	$y = \frac{-2}{4} \times \frac{11}{30} = \frac{-1}{15}$
	$\vec{c} = \frac{11}{30} (i + 2j + 3k) + \frac{2}{30} (3i + 2j + 3k) + \frac{2}{30} (3i + 2j + 3k) + \frac{2}{30} (3i + 3k) + \frac{2}{3$	$(-j-k) = \frac{5i+20j+35k}{30}$	$=\frac{1}{6}(i+4j+7k)$
	$\left \vec{c}\right = \frac{1}{6}\sqrt{1+16+49} = \frac{\sqrt{66}}{6} = \sqrt{\frac{1}{6}}$	<u>1</u> 6	
3.	be the point on C such that O.	A is parallel to x-axis an	in the line $2x - 3y + 5 = 0$ and A d A lies on the right hand side of uch that the length of the arc AB is
	$(1/6)^{\text{th}}$ of the perimeter of C,	then $\beta - \sqrt{3}\alpha$ is equal to	o :
	1) 4 2) $3 + \sqrt{3}$	3) 3	4) $4 - \sqrt{3}$
Key			
Sol:	$(1,-2); \frac{\alpha - 1}{2} = \frac{\beta + 2}{-3} = -2\frac{(13)}{3}$ $\alpha = -3, \beta = 4$ $(-3,4); \gamma = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$ $C: (x+3)^2 + (y-4)^2 = 9$ $\beta - \sqrt{3}\alpha = \frac{8}{2} = 4$ $(-3,4) = \frac{(-3,4)}{60^0} = \frac{8}{2} = 4$ $B = \left(-\frac{3}{2}\right)^{-\frac{1}{2}}$	$\frac{3}{2}, \frac{8-3\sqrt{3}}{2}$	
			Sil anno I
4.	Consider the region $R = \left\{ (x, x) \right\}$	y): $x \le y \le 9 - \frac{11}{3}x^2, x \ge$	$\left\{ 0 \right\}$. The area of the largest
	rectangle of sides parallel to t		
	1) $\frac{821}{123}$ 2) $\frac{730}{119}$	3) $\frac{567}{121}$	4) $\frac{625}{111}$
Key: Sol:	: 3		

Jee-Main-2025_Jan Session3 | Page

👧 Sri Chaitanya IIT Academy., India 2025 Jee-Main 24-Jan-2025 Shift-1 $Area = \frac{1}{2}(6)\sqrt{\frac{833}{17}} = 3\sqrt{\frac{833}{17}} = 21.$ For some $n \neq 10$, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion 6. of $(1 + x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1 + x)^{n+4}$ is 1) 10 2) 70 4)203) 35 Key: 3 **Sol:** ${}^{(n+4)}C_4; {}^{(n+4)}C_5; {}^{(n+4)}C_6$ $2^{(n+4)}C_5 = ^{(n+4)}C_4 + ^{(n+4)}C_6$ $2 = \frac{1}{n+5-5+1} + \frac{n+4-6+1}{6}$ $2 = \frac{5}{n+1} + \frac{n-1}{6} \implies n = 35.$ The product of all the rational roots of the equation $(x^2 - 9x + 11)^2 - (x - 4)(x - 5) = 3$, is 7. equal to 1) 14 2) 21 3) 7 4)28**Key:** 1 **Sol:** $(x^2 - 9x + 11)^2 - (x^2 - 9x + 20) = 3$ Let $x^2 - 9x + 11 = t$ $t^2 - (x+9) = 3$ $t^2 - t - 12 = 0 \implies t = \frac{1 \pm \sqrt{1 + 48}}{2} \implies t = 4, -3$ $\Rightarrow x^2 - 9x + 11 = 4 \Rightarrow x^2 - 9x + 7 = 0 (or) x^2 - 9x + 14 = 0$ x = 2,7Product of rational roots A and B alternately throw a pair of dice. A wins if the throws a sum of 5 before B throws 8. a sum of 8, and B wins if he throws a sum of 8 before A throws a sum of 5. The probability, that A wins if A makes the first throw, is : 1) $\frac{8}{17}$ 2) $\frac{8}{10}$ 3) $\frac{9}{17}$ 4) $\frac{9}{10}$ Key: 4 Sol: (1,4) (2,3) (3,2) (4,1) $\Rightarrow P(A) = \frac{4}{36} = \frac{1}{9}$ (2,6) (3,5) (4,4) (5,3) $(6,2) \implies P(B) = \frac{5}{26}$ Probability of A wining $P(A) = \frac{1}{9} + \frac{1}{9} \times \frac{31}{36} \times \frac{8}{9} + 0... = \frac{\frac{1}{9}}{1 - \frac{8 \times 31}{25 \times 3}} = \frac{36}{369 - 8 \times 31} = \frac{9}{19}$

Jee-Main-2025_Jan Session4 | Page

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 24-Jan-2025 Shift-1 Let the lines $3x - 4y - \alpha = 0$, 8x - 11y - 33 = 0 and $2x - 3y + \lambda = 0$ be concurrent. If the 9. image of the point (1, 2) in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha\lambda|$ is equal to 1) 101 2) 91 3) 113 4)84**Key:** 2 **Sol:** Midpoint = $\left(\frac{76}{2 \times 13}, \frac{-14}{2 \times 13}\right) = \left(\frac{35}{13}, \frac{-7}{13}\right)$ Lies on $2x - 3v + \lambda = 0$ $\Rightarrow \quad \frac{70}{13} + \frac{21}{13} + \lambda = 0 \quad \Rightarrow 13\lambda = -91 \qquad \lambda = -7$ $\begin{vmatrix} 3 & -4 & -\alpha \\ 8 & -11 & -33 \\ 2 & -3 & -2 \end{vmatrix} = 0$ $\Rightarrow 3(-22) + 4(10) - \alpha(-2) = 0$ $\Rightarrow -66+40+2\alpha=0 \qquad \Rightarrow \alpha=13.$ 10. Let $\mathbb{R} - \{0\} \to \mathbb{R}$ be a function such that $f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}$. If the $\lim_{x \to 0} \left(\frac{1}{\alpha x} + f(x) \right) = \beta; \alpha, \beta \in \mathbb{R}, \text{then } \alpha + 2\beta \text{ is equal to :}$ 1)32) 5 3) 6 4)4Key: 4 Sol: $f(x) - 6f\left(\frac{1}{r}\right) = \frac{35}{3r} - \frac{5}{2} \longrightarrow \mathbb{O}$ $6\left(f\left(\frac{1}{r}\right)-6f\left(x\right)=\frac{35}{3}x-\frac{5}{2}\right) \rightarrow \odot$ $-35f(x) = 70x - 15 + \frac{35}{2x} - \frac{5}{2}$ $\Rightarrow f(x) = -2x + \frac{15}{35} - \frac{1}{3x} + \frac{5}{35} \times \frac{1}{2} = -2x + \frac{3}{7} - \frac{1}{3x} + \frac{1}{14} = -2x - \frac{1}{3x} + \frac{1}{7}$ $Lt_{x\to 0}\left(\frac{1}{\alpha x}-2x-\frac{1}{3x}+\frac{1}{2}\right)=\beta$ $\alpha = 3; \beta = \frac{1}{2}$ $\alpha + 2\beta = 3 + 1 = 4$ Let $f(x) = \frac{2^{x+2} + 16}{2^{2x+1} + 2^{x+4} + 32}$. Then the value of $8\left(f\left(\frac{1}{15}\right) + f\left(\frac{2}{15}\right) + \dots + f\left(\frac{59}{15}\right)\right)$ is equal 11. to 2) 92 1) 108 3) 118 4) 102 Jee-Main-2025_Jan Session5 | Page

📚 Sri Chaitanya IIT Academy., India.

Key: 3 Sol: $f(x) = \frac{4(2^x+4)}{(2^x)^2 \cdot 2 + 16 \cdot 2^x + 32} = \frac{4(2^x+4)}{2(2^x+4)^2} = \frac{2}{2^x+4}$ $f(x) + f(4-x) = \frac{2}{2^{x}+4} + \frac{2}{2^{4-x}+4} = \frac{2}{2^{x}+4} + \frac{2 \cdot 2^{x}}{2^{4}+4 \cdot 2^{x}} = \frac{2}{2^{x}+4} + \frac{2^{x} \cdot 2}{4(2^{x}+4)} = \frac{2(4+2^{x})}{4(2^{x}+4)} = \frac{1}{2}$ $f\left(\frac{1}{15}\right) + \dots f\left(\frac{59}{15}\right) = 29\left(\frac{1}{2}\right) + f(2) = 14.50 + 0.25 = 14.75$. $\lim_{x \to 0} \csc \left(\sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4} \right) \text{ is :}$ 12. 1) $-\frac{1}{2\sqrt{5}}$ 2) $\frac{1}{2\sqrt{5}}$ 4) $\frac{1}{\sqrt{15}}$ 3) 0 **Key:** 1 $Lt_{x\to 0} \frac{\cos^2 x + 3\cos x - \sin x - 4}{(\sin x)(\sqrt{2\cos^2 x + 3\cos x} + \sqrt{\cos^2 x + \cos x + 4})} = \frac{-1}{2\sqrt{5}}.$ Sol: 13. If $I(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$, m, n > 0, then I(9, 14) + I(10, 13) is 2) I(9, 1) 3) I(1, 13) 4) I(19, 27) 1) I(9, 13) **Key:** 1 Sol: $I(9,14) + I(10,13) = \rightarrow \int x^8 (1-x)^{12} (1-x+x) dx = I(9,13)$ If α and β are the roots of the equation $2z^2 - 3z - 2i = 0$, where $i = \sqrt{-1}$, then 16. 14. $\operatorname{Re}\left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}}\right) \cdot \operatorname{Im}\left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}}\right) \text{ is equal to}$ 1) 409 2) 312 3) 441 4) 398 Key: 3 Sol: $Z\left(z-\frac{i}{z}\right)=3 \qquad \Rightarrow z-\frac{i}{z}=\frac{3}{2}$ $\alpha - \frac{i}{\alpha} = \frac{3}{2}$ $\alpha^2 - \frac{1}{\alpha^2} - 2i + \frac{9}{4}$ $\alpha^2 - \frac{1}{\alpha^2} = 2i + \frac{9}{4}$ $\alpha^{2} + \frac{1}{\alpha^{4}} - 2 = 9i - 4 + \frac{81}{16}$

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 24-Jan-2025 Shift-1

$$\alpha^{4} + \frac{1}{\alpha^{4}} = \frac{49}{16} + 9i \longrightarrow \mathbb{O}$$

$$\beta^{4} + \frac{1}{\beta^{4}} = \frac{49}{16} + 9i \longrightarrow \mathbb{O}$$

Question =
$$\frac{\alpha^{15} \left(\alpha^{4} + \frac{1}{\alpha^{4}}\right) + \beta^{15} \left(\beta^{4} + \frac{1}{\beta^{4}}\right)}{\alpha^{15} + \beta^{15}} = \frac{\left(\frac{49}{16} + 9i\right) \left(\alpha^{15} + \beta^{15}\right)}{\alpha^{15} + \beta^{15}}$$

Real =
$$\frac{49}{16}$$
, *im* = 9
 $16 \times \frac{49}{16} \times 9 = 441$.

15. Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b), be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

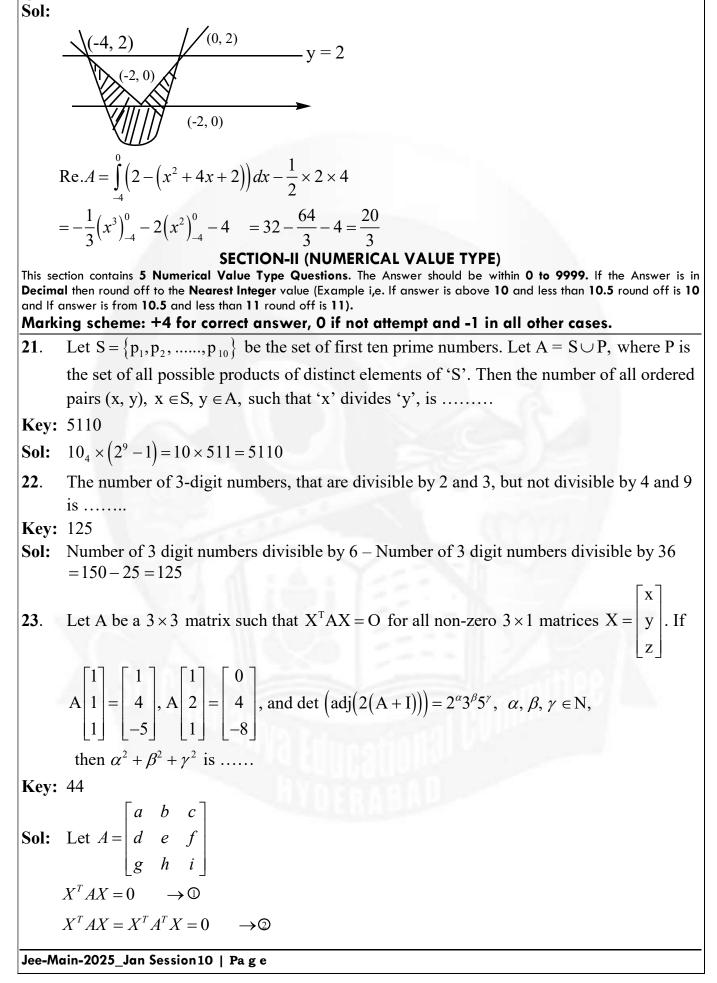
1)
$$\frac{3-2\sqrt{2}}{2\sqrt{3}}$$
 2) $\frac{1-2\sqrt{2}}{\sqrt{3}}$ 3) $\frac{1-\sqrt{3}}{\sqrt{2}}$ 4) $\frac{3-2\sqrt{3}}{3\sqrt{2}}$

Key: 1

Sol:
$$\frac{3}{a^2} + \frac{1}{4b^2} = 1$$

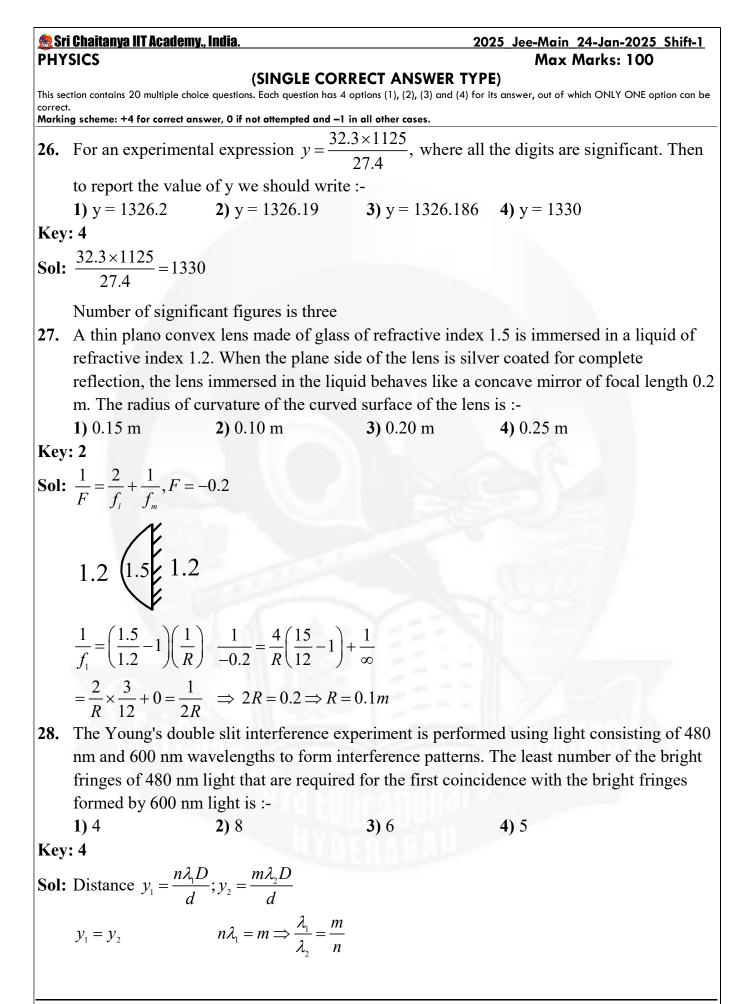
 $\frac{3}{a^2} + \frac{1}{4b^2} = 1 \Rightarrow \frac{3}{a^2} + \frac{1}{4a^2(1-e^2)} = 1 \rightarrow (1)$
 $\Rightarrow a^2 = 3 + \frac{1}{4(1-e^2)}$
 $(a - ex_1)(a + ex_1) = \frac{7}{4}$
 $a^2 - o^2(3) = \frac{7}{4} \Rightarrow a^2 - 3e^2 = \frac{7}{4} \rightarrow (2)$
 $\therefore 3 + \frac{1}{4(1-e^2)} - 3e^2 = \frac{7}{4}$
Let $e^2 = t$
 $12(1-t) - 12t(1-t) = 7(1-t)$
 $\Rightarrow 12t^2 - 17t + 6 = 0$
 $t_1 + t_2 = \frac{17}{12}, t_1t_2 = \frac{6}{12}$
 $e_1^2 + e_2^2 = \frac{17}{12}, e_1 \cdot e_2 = \frac{1}{\sqrt{2}}$

Jee-Main-2025_Jan Session7 | Page


👧 Sri Chaitanya IIT Academy., India.

🧟 Sri	i Chaitanya IIT Academy., India.		2025_Jee-Main_24-Jan-2025_Shift-1
	$(\mathbf{e}_1 - \mathbf{e}_2)^2 = \frac{17}{12} - \frac{2}{\sqrt{2}}$		
	v =		
	$ \mathbf{e}_1 - \mathbf{e}_2 = \frac{3 - 2\sqrt{2}}{2\sqrt{3}}$		
16.	Let $y = y(x)$ be the solution of	-	
	$\left(xy-5x^2\sqrt{1+x^2}\right)dx+\left(1+x^2\right)dx$	f(y) = 0, y(0) = 0. Then y	$r(\sqrt{3})$ is equal to
	1) $\sqrt{\frac{15}{2}}$ 2) $2\sqrt{2}$	3) $\frac{5\sqrt{3}}{2}$	4) $\sqrt{\frac{14}{3}}$
Key	: 3		
Sol:	$\left(1+x^2\right)\frac{dy}{dx} + xy = 5x^2\sqrt{1+x^2}$		
	$\frac{dy}{dx} + \frac{x}{1+x^2}y = \frac{5x^2}{\sqrt{1+x^2}}$		
	$ I F = e^{\int \frac{x}{1+x^2} dx} = e^{\frac{1}{2} \log(1+x^2)} = \sqrt{1+x^2} $		
		x ²	
	$y\sqrt{1+x^2} = \int 5x^2 dx$		
	$y\sqrt{1+x^2} = \frac{5}{3}x^3 + c 0 = c$		
	$y\sqrt{1+x^2} = \frac{5}{3}x^3$ $2y = \frac{5}{3}3\sqrt{2}$	$\overline{3}$ $v = \frac{5\sqrt{3}}{2}$	
17.	3 3 If the system of equations	2	
17.	2x - y + z = 4		
	$5x + \lambda y + 3z = 12$		
	$100x - 47y + \mu z = 212,$		
	has infinitely many solutions,		
Var	1) 59 2) 57	3) 56	4) 55
Key	$z = -5y - 2\lambda y - z = -4 \qquad \Rightarrow ($	$(5+2\lambda)v+z-4 \rightarrow (1)$	
	$(20\lambda + 47)y + (60 - \mu)z = 28$		
	$\frac{20\lambda + 47}{5 + 2\lambda} = \frac{60 - \mu}{1} = 7$		
	9 + 2 = 108 + (n - 1)36		
	$\mu = 53$ $20\lambda + 47 = 35 + 14\lambda$		
	$6\lambda = -12 \Longrightarrow \lambda = -2$		
	$57 = \mu - 2\lambda$		

👧 Sri Chaitan<u>ya IIT Academy., India</u> 2025 Jee-Main 24-Jan-2025 Shift-1 Let $S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots$ upto 'n' terms. If the sum of the first six terms of an A.P 18. with first term –p and common difference 'p' is $\sqrt{2026S_{2025}}$, then the absolute difference between 20th and 15th terms of the A.P is 1) 20 2) 45 3) 90 4) 25 **Key:** 4 **Sol:** $S_n = \sum_{n=1}^{11} \frac{1}{n(n+1)}$ $=\sum_{i=1}^{8} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1} = \frac{n}{n+1}$ $2026 \times S_{2025} = 2026 \times \frac{2025}{2026}$ $\sqrt{2026 \times S_{2025}} = \sqrt{2025} = 45$ -P.o. p. zp. 3 p. 4 p $qp = 45 \implies p = 5$ $T_{20} = -p + 1qp = -5 + 19(5) = 18 \times 5 = 90$ $T_{15} = -p + 14p = 13(5) = 65$ $T_{20} - T_{15} = 25$ Let the line passing through the points (-1, 2, 1) and parallel to the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ 19. intersect the line $\frac{x+2}{3} = \frac{y-3}{2} = \frac{z-4}{1}$ at the point 'P'. Then the distance of 'P' from the point Q(4, -5, 1) is 3) 5\sqrt{6} 2) 10 4) 5 1) $5\sqrt{5}$ **Key:** 1 **Sol:** $L: \frac{x+1}{2} = \frac{y-2}{3} = \frac{z-1}{4} = \lambda$ $P = (2\lambda - 1, 3\lambda + 2, 4\lambda + 1)$ $\frac{2\lambda+1}{2} = \frac{3\lambda-1}{2} = \frac{4\lambda-3}{1} \implies 4\lambda+2 = 9\lambda-3 \implies \lambda = 1$ P = (1, 5, 5) $PQ = \sqrt{9 + 100 + 16} = \sqrt{125} = 5\sqrt{5}$ The area of the region $\{(x, y): x^2 + 4x + 2 \le y \le |x + 2|\}$ is equal to **20**. 2) $\frac{24}{5}$ (4) $\frac{20}{3}$ 3) 5 1)7Key: 4 Jee-Main-2025_Jan Session9 | Page


<u>ଛ Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 24-Jan-2025 Shift-1

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 24-Jan-2025 Shift-1

Jee-Main-2025_Jan Session12 | Page

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 24-Jan-2025 Shift-1 $\Rightarrow \frac{480}{600} = \frac{m}{n} = \frac{4}{5} \Rightarrow n = 5$ $\lambda_1 = 480 nm; \lambda_2 = 600 nm$ 29. What is the relative decrease in focal length of a lens for an increase in optical power by 0.1 D from 2.5 D? ['D' stands for dioptre] 2) 0.40 4) 0.01 1) 0.04 **3)** 0.1 Key: 1 **Sol:** $2.5 = \frac{1}{f} \Rightarrow f_1 = \frac{1}{2.5} = \frac{1000}{25} = 40 \, cm$ $f_2 = \frac{1}{2.6} = \frac{1000}{26}$ $\frac{f_1 - f_2}{f_1} = 1 - \frac{f_2}{f_1} = 1 - \frac{1000}{26 \times 40} = 1 - \frac{25}{26} = \frac{1}{26} = 0.04$ **30.** An electron of mass 'm' with an initial velocity $v = v_0 i(v_0 > 0)$ enters an electric field $\vec{E} = -E_o \hat{k}$. If the initial de Broglie wavelength is λ_0 , the value after time t would be :-4) $\lambda_0 \sqrt{1 + \frac{e^2 E_0^2 t^2}{m^2 v^2}}$ 1) $\frac{\lambda_0}{\sqrt{1+\frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$ 2) $\frac{\lambda_0}{\sqrt{1-\frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$ 3) λ_0 Key: 1 **Sol:** $\lambda_0 = \frac{h}{mv}, But \vec{v} = v_0 \hat{i} + \frac{E_0 qtk}{m}$ $\left|\vec{v}\right| = \sqrt{v_0^2 + \left(\frac{E_0 et}{m}\right)^2}$ $=\frac{h}{mv_{oA}\sqrt{1+\frac{E_{0}^{2}e^{2}t^{2}}{mv^{2}}}}=\frac{\lambda_{0}}{\sqrt{1+\frac{E_{0}^{2}e^{2}t^{2}}{m^{2}v_{0}^{2}}}}$ $\lambda = \frac{h}{m_1 \left(v_0^2 + \left(\frac{E_0 et}{E_0} \right)^2 \right)}$ 31. The amount of work done to break a big water drop of radius 'R' into 27 small drops of equal radius is 10 J. The work done required to break the same big drop into 64 small drops of equal radius will be :-3) 20 J 1) 15 J 2) 10 J 4) 5 J Key: 1 **Sol:** $W = S \left[A_f - A_i \right] = S \left[27.4\pi r^2 - 4\pi R^2 \right]$ $\frac{4}{3}\pi R^{3} = 27.\frac{4}{3}\pi r^{3}; \qquad W = S4\pi \left[27\frac{R^{2}}{3^{2}} - R^{2}\right] = 4\pi R^{2}S[3-1]$ R = 3r ____(1); $10 = 8\pi R^2 S \qquad (2)$

$$\frac{4}{3}\pi R^3 = 64\frac{4}{3}\pi r^3 = R = 4r$$
 (3)

Jee-Main-2025_Jan Session13 | Page

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 24-Jan-2025 Shift-1

$$W = 4\pi S \left[64 \times \frac{R^2}{16} - R^2 \right] = 4\pi R^2 S \times 3$$
(4)
= 5 × 3 = 15 J

32. A particle is executing simple harmonic motion with time period 2s and amplitude1cm. If D and d are the total distance and displacement covered by the particle in 12.5 s, then $\frac{D}{d}$ is

1)
$$\frac{15}{4}$$
 2) 25 **3)** 10 **4)** $\frac{16}{5}$

Key: 2

:-

Sol: T = 2s A = 1 cm $x = A \sin \omega t$ $x = A \sin \frac{2\pi}{T} \times \frac{T}{4}$

$$t = 12.5 = 12 + 0.5$$
 $x = A = 6T + \frac{T}{4}$

Displacement is A

Distance $6 \times 4A + A = 25 A$, hence d = A, D = 25A

33. A force $F = \alpha + \beta x^2$ acts on an object in the x-direction. The work done by the force is 5J when the object is displaced by 1 m. If the constant $\alpha = 1N$ then β will be **1)** 15 N/m² **2)** 10 N/m² **3)** 12 N/m² **4)** 8 N/m²

Key: 3

Sol:
$$W = \int_{0}^{1} (\alpha + \beta x^{2}) dx = 1 [1] + \beta \left[\frac{x^{3}}{3} \right]_{0}^{1} = 5$$

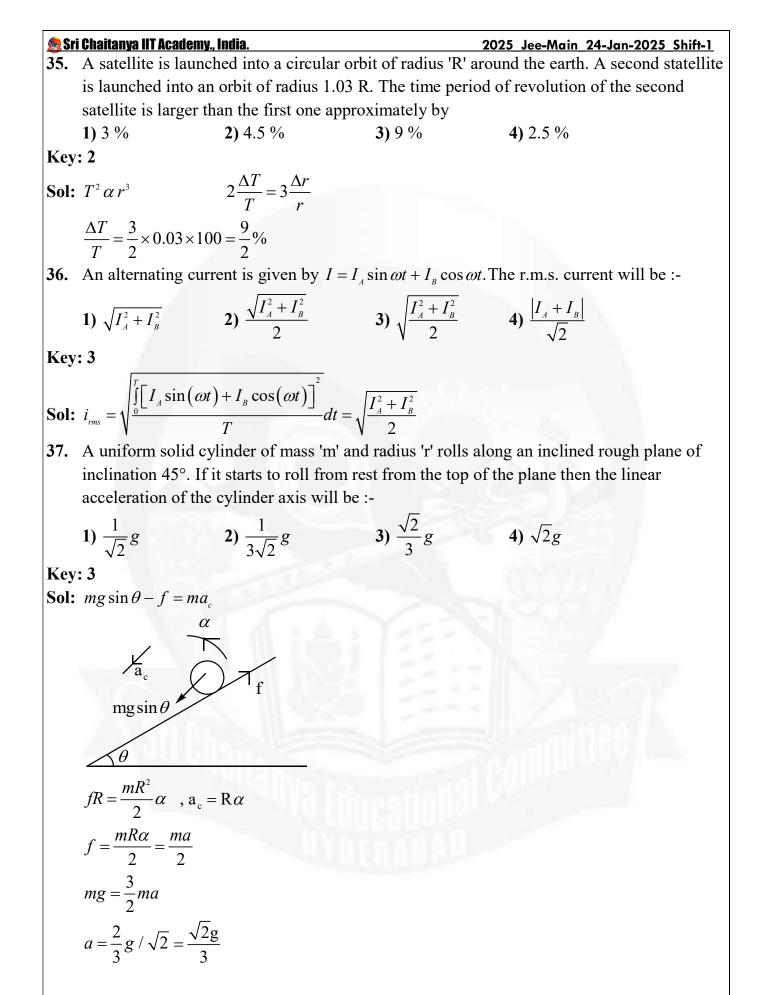
 $\frac{\beta}{3} = 4$

34. An air bubble of radius 0.1 cm lies at a depth of 20 cm below the free surface of a liquid of density 1000 kg/m³. If the pressure inside the bubble is 2100 N/m² greater than the atmospheric pressure, then the surface tension of the liquid in

 2100 N/m^2 greater than the atmospheric pressure, then the surface tension of the liquid in SI unit is (use g = 10 m/s²)

3) 0.25

4) 0.05


Key: 4

1) 0.02

Sol:
$$P_1 - P_2 = \frac{2S}{r}$$
 $P_0 + 2100 - (P_0 + \rho gh) = \frac{2S}{r}$
 $2100 - 1000 \times 10 \times 20 \times 10^{-2} = \frac{2S}{r}$
 $2100 - 2000 = \frac{2S}{r} \quad \frac{100 \times r}{2} = S$
 $\frac{100 \times 0.1 \times 10^{-2}}{2} = S$ $5 \times 10^{-2} = S$

2) 0.1

Jee-Main-2025_Jan Session14 | Page

Jee-Main-2025_Jan Session15 | Page

<u> Sri Chaitanya IIT Academy., India</u> 2025 Jee-Main 24-Jan-2025 Shift-1 **38.** A parallel plate capacitor was made with two rectangular plates, each with a length of l = 3cm and breath of b = 1 cm. The distance between the plates is $3\mu m$. Out of the following, which are the ways to increase the capacitance by a factor of 10? A. l = 30 cm, b = 1 cm, $d = 1 \mu m$ B. l = 3 cm, b = 1 cm, $d = 30 \mu m$ C. l = 6 cm, b = 5 cm, $d = 3 \mu m$ D. l = 1 cm, b = 1 cm, $d = 10 \mu m$ E. l = 5 cm, b = 2 cm, $d = 1 \mu m$ Choose the correct answer from the options given below : **1)** C and E only **2)** B and D only 3) A only 4) C only Key: 1 **Sol:** $C_0 = \epsilon_0 \times \frac{3 \times 1}{3} = \epsilon_0$ $C_1 = \epsilon_0 \times \frac{30 \times 1}{1} = 30 \epsilon_0$ $C_2 = \epsilon_0 \times \frac{3 \times 1}{30} = \frac{\epsilon_0}{10}$ $C_3 = \epsilon_0 \times \frac{6 \times 5}{3} = 10 \epsilon_0$ $C_4 = \epsilon_0 \times \frac{1 \times 1}{10} = \frac{\epsilon_0}{10}$ $C_5 = \epsilon_0 \times \frac{5 \times 2}{1} = 10 \epsilon_0$

39. Consider the following statements:

A. The junction area of solar cell is made very narrow compared to a photo diode.

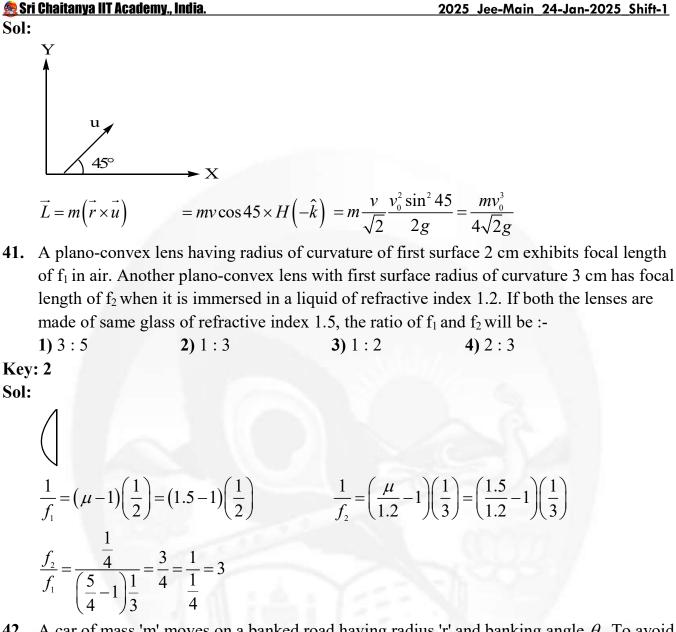
B. Solar cells are not connected with any external bias.

C. LED is made of lightly doped p-n junction.

D. Increase of forward current results in continuous increase of LED light intensity.

E. LEDs have to be connected in forward bias for emission of light.

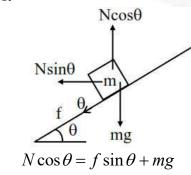
Key: 4


Sol: Conceptual

40. An object of mass 'm' is projected from origin in a vertical xy plane at an angle 45° with the x-axis with an initial velocity v_0 . The magnitude and direction of the angular momentum of the object with respect to origin, when it reaches at the maximum height, will be [g is acceleration due to gravity]

1)
$$\frac{mv_0^3}{2\sqrt{2}g}$$
 along negative z-axis
2) $\frac{mv_0^3}{2\sqrt{2}g}$ along positive z-axis
3) $\frac{mv_0^3}{4\sqrt{2}g}$ along positive z-axis
4) $\frac{mv_0^3}{4\sqrt{2}g}$ along negative z-axis

Key: 4


Jee-Main-2025_Jan Session16 | Page

42. A car of mass 'm' moves on a banked road having radius 'r' and banking angle θ . To avoid slipping from banked road, the maximum permissible speed of the car is v_0 . The coefficient of friction μ between the wheels of the car and the banked road is :-

1)
$$\mu = \frac{v_0^2 + rg \tan \theta}{rg - v_0^2 \tan \theta}$$
 2) $\mu = \frac{v_0^2 + rg \tan \theta}{rg + v_0^2 \tan \theta}$ 3) $\mu = \frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta}$ 4) $\mu = \frac{v_0^2 - rg \tan \theta}{rg - v_0^2 \tan \theta}$

Key: 3 Sol:

Jee-Main-2025_Jan Session17 | Page

2) A, D, E Only

👧 Sri Chaitanya IIT Academy., India.

$$f \cos \theta + N \sin \theta = \frac{mv_0}{r}$$

$$\mu N \cos \theta + N \sin \theta = \frac{mv_0^2}{r}$$

$$N \cos \theta = \mu N \sin \theta + mg \qquad \Rightarrow \mu = \frac{v_0^2 - gr \tan \theta}{gr + v_0^2 \tan \theta}$$

43. Consider a parallel plate capacitor of area A (of each plate) and separation 'd' between the plates. If E is the electric field and ε_0 is the permittivity of free space between the plates, then potential energy stored in the capacitor is :-

1)
$$\frac{1}{2}\varepsilon_0 E^2 A d$$
 2) $\frac{3}{4}\varepsilon_0 E^2 A d$ 3) $\frac{1}{4}\varepsilon_0 E^2 A d$ 4) $\varepsilon_0 E^2 A d$

Key: 1

Sol: $U = \frac{1}{2} \in_{0} E^{2}Ad =$ Energy density × volume

2

44. An ideal gas goes from an initial state to final state. During the process, the pressure of gas increases linearly with temperature.

A. The work done by gas during the process is zero.

B. The heat added to gas is different from change in its internal energy.

C. The volume of the gas is increased.

D. The internal energy of the gas is increased.

E. The process is isochoric (constant volume process)

Choose the correct answer from the options given below :-

1) A, B, C, D Only

3) E Only **4)** A, C Only

Key: 2

Sol: The given process is isochoric (conceptual)

45. During the transition of electron from state A to state C of a Bohr atom, the wavelength of emitted radiation is 2000 Å and it becomes 6000 Å when the electron jumps from state B to state C. Then the wavelength of the radiation emitted during the transition of electrons from state A to state B is :-

1) 3000 Å 2) 6000 Å 3) 4000 Å 4) 2000 Å Key: 1 Sol: $\frac{hc}{2000} = E_A - E_C$ $\frac{hc}{6000} = E_B - E_C$

$$hc\left[\frac{1}{2000} - \frac{1}{6000}\right] = E_{A} - E_{B} = \frac{hc}{x}$$
$$\frac{1}{2000}\left[1 - \frac{1}{3}\right] = \frac{1}{x} \Longrightarrow x = \frac{3}{2} \times 2000 = 3000 A^{\circ}$$

Jee-Main-2025_Jan Session18 | Page

<u> Sri Chaitanya IIT Academy., India</u>

2025 Jee-Main 24-Jan-2025 Shift-1

SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i.e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

46. The least count of a screw guage is 0.01 mm. If the pitch is increased by 75% and number of divisions on the circular scale is reduced by 50%, the new least count will be _____

 $\times 10^{-3}$ mm.

Sol:
$$L.C = \frac{P}{N} = 0.01$$

$$\frac{P + 0.75P}{N - 0.5N} = \frac{1.75P}{0.5N} = \frac{1.75}{0.5} \times 0.01 = \frac{175}{50} \times 0.01$$
$$= \frac{7}{2} \times 0.01 = 7 \times 0.005 = 0.035 \, mm$$

47. A current of 5A exists in a square loop of side $\frac{1}{\sqrt{2}}m$. Then the magnitude of the magnetic field B at the centre of the square loop will be $p \times 10^{-6}T$. Where, value of p is

$$\left[\text{Take}\,\mu_{0} = 4\pi \times 10^{-7} \, TmA^{-1} \right]$$

Key: 8

Sol:

$$B = \frac{\mu_0 i}{4\pi \frac{d}{2}} \times 2 \times \frac{1}{\sqrt{2}} \times 4 \qquad \qquad = \frac{\mu_0 i}{4\pi} \times \frac{16}{\sqrt{2} \times \frac{1}{\sqrt{2}}} = 16 \times 10^{-7} \times 5 = 8 \times 10^{-6} T$$

48. A square loop of sides a = 1 m is held normally in front of a point charge q = 1C. The flux of the electric field through the shaded region is $\frac{5}{p} \times \frac{1}{\varepsilon_0} \frac{Nm^2}{C}$, where

the value of p is _____. $\frac{a}{2}$

Jee-Main-2025_Jan Session19 | Page

👧 Sri Chaitanya IIT Academy., India.

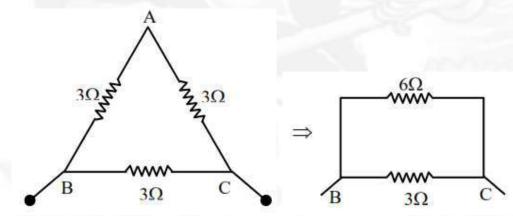
Key: 48

Sol: $\phi = \frac{Q}{6\epsilon_0} \times \frac{1}{2} + \frac{q}{6\epsilon_0} \times \frac{1}{4} \times \frac{1}{2}$ (assume the distance of point charge is a/2 from centre)

$$= \frac{q}{12\epsilon_{0}} + \frac{q}{48\epsilon_{0}} = \frac{1}{12\epsilon_{0}} \left[1 + \frac{1}{4} \right] = \frac{3}{4} \times \frac{1}{12\epsilon_{0}} = \frac{3}{48\epsilon_{0}}$$

49. The temperature of 1 mole of an ideal monoatomic gas is increased by 50°C at constant pressure. The total heat added and change in internal energy are E_1 and E_2 , respectively.

If
$$\frac{E_1}{E_2} = \frac{x}{9}$$
 then the value of x is _____


Key: 15

Sol: $E_1 = nC_p (\Delta T)$ $E_2 = nC_v (\Delta T)$ $\frac{E_1}{E_2} = \frac{C_p}{C_v} = \frac{5}{3} = \frac{15}{9}$

50. A wire of resistance 9Ω is bent to form an equilateral triangle. Then the equivalent resistance across any two vertices will be __ohm.

Key: 2

Sol:

<u>® Sri Chaitanya IIT Academy., India.</u> CHEMISTRY

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

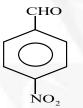
- **51**. Which of the following statements are NOT true about the periodic table?
 - A) The properties of elements are function of atomic weights.
 - B) The properties of elements are function of atomic numbers.
 - C) Elements having similar outer electronic configurations are arranged in same period.
 - D) An element's location reflects the quantum numbers of the last filled orbital.

E) The number of elements in a period is same as the number of atomic orbitals available in energy level that is being filled.

Choose the correct answer the from the options given below :

- 1) A, C and E only 2) D and E only
- 3) B, C and E only 4) A and E only

Key : 1


- **Sol :** The no. of valency electrons are same in any group and number of elements in a period is not equal to number of atomic orbitals available in the given energy level.
- **52**. Which of the following arrangements with respect to their reactivity in nucleophilic addition reaction is correct?
 - 1) benzaldehyde < acetophenone < p-nitrobenzaldehyde < p-toluadehyde
 - 2) acetophenone < benzaldehyde < p-toluadehyde < p-nitrobenzaldehyde
 - 3) p-nitrobenzaldehyde < benzaldehyde < p-toluadehyde < acetophenone
 - 4) acetophenone < p-toluadehyde < benzaldehyde < p-nitrobenzaldehyde

CHO

ĊН

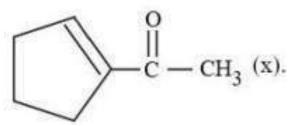
Key: 4

Sol:

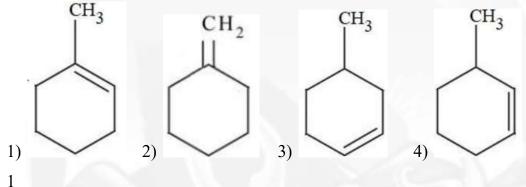
p-nitrobenzaldehyde p-tolyaldehyde

CHO

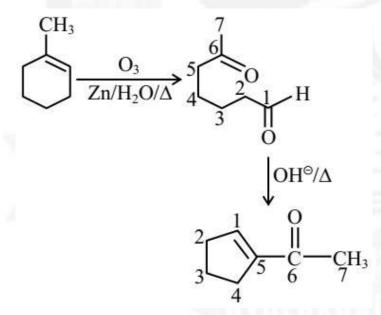
acetophenone

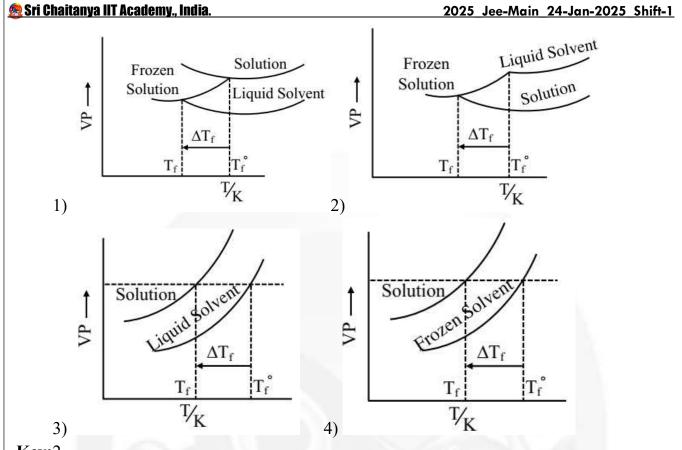

 $-CH_3$

- 53. One mole of the octahedral complex compound $Co(NH_3)_5 Cl_3$ gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with excess of AgNO₃ solution to yield two moles of AgCl(s). The structure of the complex is :
 - 1) $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right]\operatorname{Cl}_2$ 2) $\left[\operatorname{Co}(\operatorname{NH}_3)_3\operatorname{Cl}_3\right].2\operatorname{NH}_3$ 3) $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right].\operatorname{Cl}.\operatorname{NH}_3$ 4) $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2.\operatorname{NH}_3\right]$

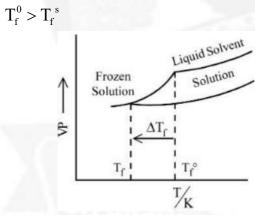

Key: 1

Sol:
$$\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right]\operatorname{Cl}_2 + 2\operatorname{AgNO}_3 \rightarrow \left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right](\operatorname{NO}_3)_2 + 2\operatorname{AgCl}$$


Jee-Main-2025_Jan Session21 | Page


54. Aman has been asked to synthesis the molecule He thought of preparing the molecule using an aldol condensation reaction. He found a few cyclic alkenes in his laboratory. He thought of performing ozonolysis reaction on alkene to produce a dicarbonyl compound followed by aldol reaction to prepare 'x'. Predict the suitable alkene that can lead to the formation of 'x'.

Key: 1 **Sol:**


55. Consider the given plots of vapour pressure (VP) vs temperature (T/K). Which amongst the following options is correct graphical representation showing ΔT_f , depression in the freezing point of a solvent in a solution?

Key:2

Sol: An adding non-volatile solute in a solvent the freezing point of solution decreases graph.

 $\mathbf{P}^0 > \mathbf{P}$

56. For the given cell

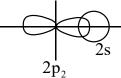
$$\operatorname{Fe}_{(aq)}^{2+} + \operatorname{Ag}_{(aq)}^{+} \rightarrow \operatorname{Fe}_{(aq)}^{3+} + \operatorname{Ag}_{(s)}$$

The standard cell potential of the above reaction is Given :

	$Ag^+ + e^- \rightarrow Ag$		$E^{\theta} = xV$	
	$Fe^{2+} + 2e^- \rightarrow Fe$		$E^{\theta} = yV$	
	$\mathrm{Fe}^{3+} + 3\mathrm{e}^{-} \rightarrow \mathrm{Fe}$		$E^{\theta} = zV$	
	1) $x + 2y - 3z$	2) $x + y - z$	3) x + 2y	4) y – 2x
Ke	y: 1			

Jee-Main-2025_Jan Session23 | Page

2025 Jee-Main 24-Jan-2025 Shift-1


<u> Sri Chaitanya IIT Academy., India.</u>

 $Fe^{+2} + Ag^{+} \rightarrow Fe^{+3} + Ag$ Sol: (aq) (aq) (aq) (s) $Fe \xrightarrow{\varDelta G_1} Fe^{+2} \xrightarrow{\varDelta G_2} Fe^{+3}$ $Ag^+ + e^- \rightarrow Ag \ \varDelta G_1 = -Fx \dots(1)$ $Fe^{+2} + 2e^- \rightarrow Fe \ \Delta G_2 = -2F_y \dots (2)$ $Fe \rightarrow Fe^{+3} + 3e^{-} \Delta G_3 = 3FZ \dots (3)$ From (1), (2) and (3) = x + 2y - 3zThe carbohydrate 'Ribose' present in DNA, is 57. B) Present in pyranose from A) A pentose sugar C) in 'D' configuration D) a reducing sugar, when free E) in α -anomeric form Choose the correct answer from the options given below : 1) B, D and E only 2) A, C and D only 3) A, D and E only 4) A, B and E only **Key:** 2 Sol: De oxy nuclic acid HOCH₂ O OH /H Н OH $\beta - D - 2 - deoxyribose$ Ο $\widetilde{C} - H$ н -OH H-- OH —— OH H- $CH_2 - OH$ **D**-ribose **D**-Configuration **58**. Which of the following linear combination of atomic orbitals will lead to formation of molecular orbitals in homonuclear diatomic molecules [internuclear axis in z-direction]? A) $2p_z$ and $2p_x$ B) 2s and $2p_x$ C) $3d_{xy}$ and $3d_{x^2-y^2}$ D) 2s and $2p_z$ **E)** $2p_z$ and $3d_{y^2-y^2}$ Choose the correct answer from the options given below : 1) A and B only 2) E only 3) C and D only 4) D only Key: 4

Jee-Main-2025_Jan Session24 | Page

🧟 Sri Chaitanya IIT Academy., India.

Sol:

Different directional orbitals or different nodal plane orbital do not gives molecular orbitals

59. Let us consider an endothermic reaction which is non-spontaneous at the freezing point of water. However, the reaction is spontaneous at boiling point of water. Choose the correct option :

1) Both ΔH and ΔS are (+ve) 2) Both ΔH and ΔS are (-ve)

3 $\Delta H is(+ve) but \Delta S is(-ve)$ 4) $\Delta H is(-ve) but \Delta S is(+ve)$

Key: 1

Sol: $\Delta H = +ve$

 $\Delta S = +ve$ spontaneous

60. For a reaction, $N_2O_{5(g)} \rightarrow 2NO_{2(g)} + \frac{1}{2}O_{2(g)}$ in a constant volume container, no products were present initially. The final pressure of the system when 50% of reaction gets completed is

1) 5/2 times of initial pressure

2) 7/4 times of initial pressure

 $-NH_{2}$

- 3) 7/2 times of initial pressure
- 4) 5 times of initial pressure

Key: 2

Sol:
$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

 $P_0 \qquad 0 \qquad 0$
 $P_0 - x \quad 2x \qquad \frac{x}{2}$
 $P_0 - \frac{P_0}{2} \quad P_0 \qquad \frac{P_0}{4}$
Total pressure = $P_0 - \frac{P_0}{2} + P_0 + \frac{P_0}{4} = \frac{7}{4}P_0$
61. The product (A) formed in the following reaction sequence is
i) Hg^{2+}, H_2SO_4
 $CH_3 - C = CH \xrightarrow{ii) HCN}_{iii) H_2 / Ni} (A)$ product
 $NH_2 \qquad OH$
1) $CH_3 - CH_2 - CH - CH_2 - OH \qquad 2) CH_3 - CH_2 - CH - CH_2$
 $NH_2 \qquad OH$
3) $CH_3 - \frac{1}{C} - CH_2 - OH \qquad 4) CH_3 - \frac{1}{C} - CH_2 - NH_2$
 $CH_3 = CH_3 - CH_2 - OH \qquad 4) CH_3 - \frac{1}{C} - CH_2 - NH_2$
 $CH_3 = CH_3 - CH_2 - OH \qquad 4) CH_3 - \frac{1}{C} - CH_2 - NH_2$
 $CH_3 = CH_3 - CH_3$

Jee-Main-2025_Jan Session25 | Pa g e

Sol: $CH_{3}C \equiv CH \xrightarrow{Hg^{+2} / H^{+}} CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{HCN} CH_{3} \xrightarrow{O} CH_{3}$ H₂ / Ni OH $CH_3 - C - CH_2 - NH_2$ ĊH, Which of the following statement is true with respect to H₂O, NH₃ and CH₄? **62**. A) The central atoms of all the molecules are sp^3 hybridized. B) The H - O - H, H - N - H and H - C - N angles in the above molecules are 104.5°, 107.5° and 109.5°, respectively C) The increasing order of dipole moment is $CH_4 < NH_3 < H_2O$ D) Both H_2O and NH_3 are Lewis acids and CH_4 is a Lewis base. E) A solution of NH₃ in H₂O is basic. In this solution NH₃ and H₂O act as Lowry-Bronsted acid and base respectively. Choose the correct answer from the options given below : 1) A, B, C and E only 2) A, B and C only 4) A, D and E only 3) C, D and E only **Key:** 2 **Sol:** Dipole moment $H_2O > NH_3 > CH_4$ $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ NH₃ acts as Lowry – Bronsted base **63**. Given below are two statements – I and II. Statement - I : Dumas method is used for estimation of 'Nitrogen' in an organic compound Statement - II : Dumas method involves the formation of ammonium sulphate by heating the organic compound with conc. H₂SO₄ In the light of the above statements, choose the correct answer from the options given below: 1) Statement – I is true but Statement – II is false 2) Statement – I is false but Statement – II is true 3) Both Statement – I and Statement – II are false 4) Both Statement – I and Statement – II are true **Key:** 1 Sol: Statement – II false In Dumas method, nitrogen is present in organic compound is converted in to N₂

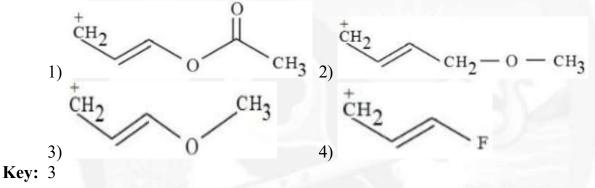
<u> Sri Chaitanya IIT Academy., India</u>

🧟 Sri (Chaitanya IIT Academy., India. 2025 Jee-Main 24-Jan-2025 Shift-1			
64.	Which of the following ions is the strongest oxidizing agent?			
	(Atomic number of $Ce = 58$, $Eu = 63$, $Tb = 65$, $Lu = 71$)			
	1) Eu^{2+} 2) Ce^{3+} 3) Lu^{3+} 4) Tb^{4+}			
Key:				
Sol:	Tb ⁺⁴ is the strongest oxidizing agent based on SRP value and oxidation state.			
65.	Preparation of potassium permanganate from MnO_2 involves two step process in which			
	the 1^{st} step is a reaction with KOH and KNO_3 to produce			
	1) $K_4[Mn(OH)_6]$ 2) $KMnO_4$ 3) K_2MnO_4 4) K_3MnO_4			
Key:	3			
Sol:	$MnO_2 + 2KOH + KNO_3 \rightarrow K_2MnO_4 + H_2O + KNO_2$			
66.	The large difference between the melting and boiling points of oxygen and sulphur may be explained on the basis of			
	1) Atomicity 2) Electronegativity			
	3) Atomic size 4) Electron gain enthalpy			
Key:	1			
Sol:	Largest difference between the melting point and boiling point of oxygen and sulphur			
	explained by atomicity. Oxygen is a diatomic gaseous molecule and sulphur is a octa			
	atomic solid.			
67.	Following are the four molecules P, Q, R and S. Which one among the four molecules			
	will react with $H - Br_{(aq)}$ at the fastest rate?			
	$0, 0, CH_3 $			
	СН3			
	P Q R S			
	1) Q 2) P 3) R 4) S			
Key:	1			
Sol:				
	$P \qquad Q \qquad R \qquad S \qquad \xrightarrow{HBr} fastest$			
	0 0 Br			
	$\begin{array}{c c} & & \\ & &$			
Jee-M	ain-2025_Jan Session27 Pa g e			
L				

<u> Sri Chaitanya IIT Academy., India.</u>

2025 Jee-Main 24-Jan-2025 Shift-1

Stable. Carbocation due to + M (electrophilic additional mechanism) **68**. K_{sp} for Cr(OH)₃ is 1.6×10^{-30} . What is the molar solubility of this salt in water?


1)
$$4\sqrt{\frac{1.6 \times 10^{-30}}{27}}$$
 2) $2\sqrt{1.6 \times 10^{-30}}$ 3) $5\sqrt{1.8 \times 10^{-30}}$ 4) $\frac{1.8 \times 10^{-30}}{27}$

Key: 1

Sol:
$$Cr(OH)_3 \rightleftharpoons Cr^{+3} + 3OH^{-3}$$

 $K_{sp} = 27S^4$
 $S^4 = \frac{1.6 \times 10^{-30}}{27}$
 $S = 4 \sqrt{1.6 \times 10^{-30}}$

27

69. Which one of the carbocations from the following is most stable?

Sol:

Order of stability 3 > 4 > 1 > 2

More stable due to resonance effect

70. Given below are two statements :

Statement -I: The conversion proceeds well in the less polar medium.

 $CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{HO^-} CH_3 - CH_2 - CH_2 - CH_2 - OH + CI^{(-)}$ Statement – II : The conversion proceeds well in the more polar medium.

$$CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{\mathbf{R}_3 \ \mathbf{N}} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - \frac{\mathbf{R}_1}{\mathbf{N}_2 - \mathbf{R}_2} R CI^{(-)}$$

In the light of the above statements, choose the correct answer from the options given below :

1) Statement – I is true but Statement – II is false

- 2) Statement I is false but Statement II is true
- 3) Both Statement I and Statement II are false
- 4) Both Statement I and Statement II are true

Jee-Main-2025_Jan Session28 | Page

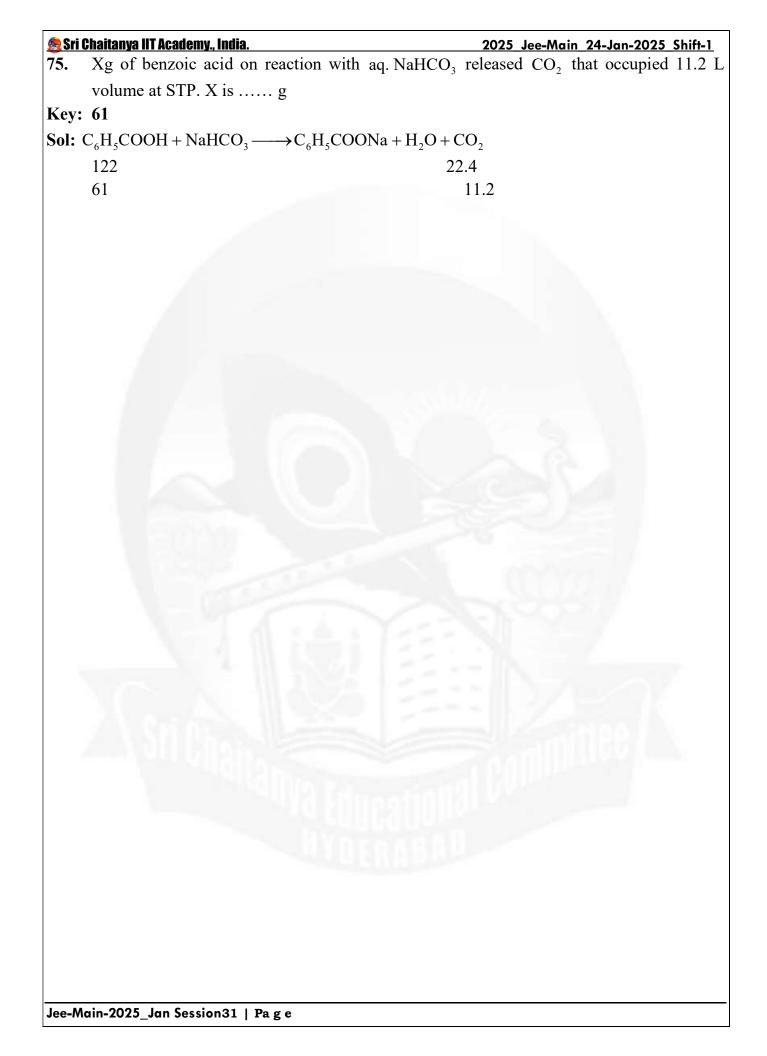
Sri Chaitanya IIT Academy., India. 2025_Jee-Main_24-Jan-2025_Shift-1_				
Key:	Key: 1			
Sol:	Statement – I is true but Statement – II is false			
	Both are polar a protic. $(SN^2 \text{ mechanism})$			
Decim and If	SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.			
71.	Among the following cations, the number of cations which give characteristic precipitate			
	in their identification tests with $K_4[Fe(CN)_6]$ is			
	Cu ²⁺ , Fe ³⁺ , Ba ²⁺ , Ca ²⁺ , NH ₄ ⁺ , Mg ²⁺ , Zn ²⁺			
Key:	NTA key : 3 & Chaitanya key : 4			
Sol:	Only Cu^{2+} , Fe^{3+} and Zn^{2+} form precipitate with $K_4[Fe(CN)_6]$			
	In Vogel's book $Ca_2[Fe(CN)_6]$ is a white ppt. So answer is 4			
72.	Consider the following occurring in the blast furnace :			
	$Fe_{3}O_{4(s)} + 4CO_{(g)} \rightarrow 3Fe_{(l)} + 4CO_{2(g)}$			
	'x' kg of irons is produced when 2.32×10^3 kg Fe ₃ O ₄ and 2.8×10^2 kg CO are brought			
	together in the furnace. The value of 'x' is (nearest integer) (Given :			
	Molar mass of $Fe_3O_4 = 232 \text{ g mol}^{-1}$			
	Molar mass of $CO = 28 \text{ g mol}^{-1}$			
	Molar mass of $Fe = 56 g mol^{-1}$)			
Key:	420			
Sol:	No. of moles of $\text{Fe}_3\text{O}_4 = \frac{2.32 \times 10^3 \times 10^3}{232} = 10^4$ mole			
	No. of moles of $CO = \frac{2.8 \times 10^2 \times 10^3}{28} = 10^4$ moles			
	$Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$			
	4 mole CO \rightarrow 3 mole Fe			
	10 ⁴ mole CO?			
	$\frac{10^4 \times 3}{4} = 0.75 \times 10^4$ moles			
	$= 0.75 \times 10^4 \times 56$			
	$=42\times10^4$ gms			
	= 420 kg			
73.	37.8 $g N_2 O_5$ was taken in a 1 L reaction vessel and allowed to undergo the following			
	reaction at 500 K			

Jee-Main-2025_Jan Session29 | Page

2025 Jee-Main 24-Jan-2025 Shift-1

 $2N_2O_{5(g)} = 2N_2O_{4(g)} + O_{2(g)}$ The total pressure at equilibrium was found to be 18.65 bar. Then, $Kp = \dots \times 10^{-2}$ [nearest integer] Assume N_2O_5 to behave ideally under these conditions. Given : R = 0.082 bar L mol⁻¹K⁻¹ **Key: 962 Sol:** Initial pressure $N_2O_5 P = \frac{nRT}{N}$ $=\frac{37.8\times0.082\times500}{108\times1}=14.35$ bar $2N_2O_5 \implies 2N_2O_4 + O_2$ 0 14.35 0 14.35 - 2P2PΡ Total pressure = 14.35 - 2P + 2P + P = 18.65P = 4.3 $P_{N_2O_5} = 5.75$ $P_{N_2O_4} = 8.6$ $P_{0_2} = 4.3$ $K_{\rm P} = \frac{8.6 \times 8.6 \times 4.3}{5.75 \times 5.75} = 9.618$ $=961.8 \times 10^{-2} = 962$ Standard entropies of X_2 , Y_2 and XY_5 are 70, 50 and 110 JK⁻¹ mol⁻¹ respectively. The 74. temperature in Kelvin at which the reaction

$$\frac{1}{2}X_2 + \frac{5}{2}Y_2 \xrightarrow{} XY_5 \varDelta H^{\odot} = -35 \text{ kJ mol}^{-1}$$


Will be at equilibrium is (nearest integer)

Key: 700

👧 Sri Chaitanya IIT Academy., India

Sol:
$$\frac{1}{2}X_2 + \frac{5}{2}Y_2 \Longrightarrow XY_5$$

 $\Delta S = S_P - S_R$
 $= 110 - \left[\frac{1}{2}(70) + \frac{5}{2}(50)\right] = -50$
 $\Delta S = \frac{\Delta H \times 10^3}{T} J/mol$
 $T = \frac{-35 \times 1000}{-50}$

Jee-Main-2025_Jan Session30 | Page

JEE MAIN 2024

K C BASAVA REDDY APPL.No. 240310618179*

POWE ORDIN

PROUDLY ACHIEVED **22 RANKS IN TOP 1000**

SEIZES **4 RANKS** IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 **ALL INDIA OPEN CATEGORY**

SCAN THE QR CODE