

SRICHAITANYA NATION'S 1STCHOICE FOR IIT-JEE SUCCESS

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY

JEE MAIN (JAN) 2025 – SHIFT 1 29–01–2025

2025 Jee-Main 29-Jan-2025 Shift-01

Sri Chaitanya IIT Academy., India. A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON Central Office – Madhapur – Hyderabad 2025_Jee-Main_29-Jan-2025_Shift-01 MATHEMATICS Max Marks: 100 (SINGLE CORRECT ANSWER TYPE) This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. Two parabolas have the same focus (4, 3) and their directrices are the x-axis and the y-1. axis, respectively. If these parabolas intersects at the points A and B, then (AB)² is equal to: 1)96 2)392 3)384 4)192Key: 4 Solution: $(x-4)^2 = 6(y-3/2)$ ---- A $(y-3)^2 = 8(x-2)$ -----B $x^2 - 8x + 16 - 6v + 9 = 0$ ------1 $v^2 - 6v + 9 - 8x + 16 = 0$ -----2 $1-2 \Rightarrow (x-y)(x+y) = 0 \Rightarrow x = y \text{ or } x = -y$ $A \Longrightarrow (x-4)^2 = 6(x-3/2)$ $\Rightarrow x^2 - 14x + 25 = 0 \rightarrow x_1, x_2$ $AB^{2} = 2(x_{1} - x_{2})^{2} = 2((x_{1} + x_{2})^{2} - 4x_{1}x_{2})$ $= 2(196 - 4 \times 25) = 192$ Let the area of the region $\{(x, y): 2y \le x^2 + 3, y + |x| \le 3, y \ge |x-1|\}$ be A. Then 6A is 2. equal to: 1)16 2)143)12 4)18Key:2 Solution:

$$3 - x = \frac{x^2 + 3}{2} \Rightarrow x^2 + 2x - 3 = 0 \qquad \Rightarrow (x + 3)(x - 1) = 0 \qquad \Rightarrow x = 1, -3$$

$$y = -x + 1 \quad \& \quad y = \frac{x^2 + 3}{2} \qquad \Rightarrow -x + 1 = \frac{x^2 + 3}{2} \Rightarrow x^2 + 2x + 1 = 0$$

$$\Rightarrow (x + 1)^2 = 0 \qquad \Rightarrow x = -1 \qquad \Rightarrow (-1, 2)$$

$$A = Area = 2\sqrt{2} \times \sqrt{2} - 2\left(\int_0^1 \left((3 - x) - \left(\frac{x^2 + 3}{3}\right)\right) dx\right) \qquad = 4 - 2\left\{\frac{3x}{2} - \frac{x^2}{2} - \frac{x^3}{6}\right|_0^1\right\}$$

$$= 4 - 2\left(\frac{3}{2} - \frac{1}{2} - \frac{1}{6}\right) = 4 - 2 \times \frac{5}{6} = 4 - \frac{5}{3} = \frac{7}{3} \qquad 6A = 6 \times \frac{7}{3} = 14$$
Let X_1, X_2, \dots, X_{10} be ten observations such that
$$\sum_{i=1}^{10} (x_i - 2) = 30, \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \beta > 2, \text{ and their variance is 4/5 .if } \mu \text{ and } \sigma^2 \text{ are}$$

respectively the mean and the variance of $2(x_1 - 1) + 4\beta$,

*i=*1

$$2(x_2-1)+4\beta,...,2(x_{10}-1)+4\beta$$
, then $\frac{\beta\mu}{\sigma^2}$ is equal to
1) 100 2) 120 3) 90 4) 110

Key: 1

3.

Solution:

i=1

$$\sum x_{1} = 50, \ \sum x_{1}^{2} = 98 - 10\beta^{2} + 2\beta \times 50$$
$$(\sigma^{1})^{2} = \frac{\sum x_{1}^{2}}{1} - \mu^{1^{2}} = \frac{4}{5} \Rightarrow \sum x_{1}^{2} = \left(\frac{4}{5} + 25\right)10 = 258$$
$$10\beta^{2} - 100\beta + 160 = 0 \Rightarrow \beta^{2} - 10\beta + 16 = 0$$
$$\beta = 2,8 \ \mu = 2(\mu^{1}) - 2 + 4\beta = 2(5) - 2 + 4(8) = 40$$
$$\sigma^{2} = 4(\sigma^{1})^{2} = 4 \times \frac{4}{5} = \frac{16}{5} \qquad \qquad \frac{\beta\mu}{\sigma^{2}} = \frac{8 \times 40}{\frac{16}{5}} = 100$$

4. Let P be the set of seven digit numbers with sum of their digits equal to 11. If the Numbers in P are formed by using the digits 1, 2 and 3 only, then the number of Elements in the set P is:

1)158 2) 161 3) 164 4) 173

Key: 2

Solution:

$$1112222 \rightarrow \frac{7!}{3!4!} = 35$$

$$1111223 \rightarrow \frac{7!}{4!2!} = 105$$

$$111133 \rightarrow \frac{7!}{5!2!} = 21 = 161$$
5. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix}$ If A_{ij} is the factor of a_{ij} ,
 $C_{ij} = \sum_{k=1}^{2} a_{ik} A_{jk}, 1 \le i, j \le 2$, and $C = \begin{bmatrix} C_{ij} \end{bmatrix}$, then $8|C|$ is equal to
1)288 2) 262 3) 222 4) 242

Key: 4

Solution:

<u> Sri Chaitanya IIT Academy., India.</u>

$$C = A(adj(A)) = |A||I \implies 8|C| = 8 \times |A|^2 \times 1$$

= 8 \times \left(\frac{\log 128}{\log 5} \frac{\log 5}{\log 4} - \frac{\log 5}{\log 4} \frac{\log 8}{\log 5}\right)^2 = 8\left(\log_4 \frac{128^2}{8}\right) = 8 \times \left(\frac{11}{2}\right)^2 = 242

Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the 6. sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is:

Key: 1

7.

Solution: $a+a+d+a+2d = 54 \implies a+d = 18$

$$S_{20} = \frac{20}{2} (2a+19d) = 20a+190d = 20(a+d)+170d = 360+170d$$

$$1600 \le 360+170d \le 1800$$

$$1240 \le 170d \le 1440$$

$$7.29 \le d \le 8.47 \implies d = 8$$

$$T_{11} = a+10d = 10+80 = 90$$
7. The value of
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!} \right)$$
 is:

$$1)7/3 \qquad 2) 2 \qquad 3)5/3 \qquad 4) 4/3$$
Key: 3

🗟 Sri Chaitanya IIT Academy., India.

2025_Jee-Main_29-Jan-2025_Shift-01

Solution $\lim_{x \to \infty} \sum_{k=1}^{n} \frac{(k+1)(k+2)(k+3)-1}{(k+3)!}$ $=\lim_{x\to\infty}\sum_{k=1}^{2n}\frac{n}{k=1}\frac{1}{k!}-\frac{1}{(k+3)!}=\frac{1}{1!}-\frac{1}{4!}+\frac{1}{2!}-\frac{1}{5!}+\frac{1}{5!}-\frac{1}{6!}$ $+\frac{1}{4!}-\frac{1}{7!}\dots=5/3$ Let M and m respectively be the maximum and the minimum values of 8. $1+\sin^2 x \cos^2 x 4\sin 4x$ $f(x) = |\sin^2 x| + \cos^2 x + 4\sin 4x$, $x \in R$ Then $M^4 - m^4$ is equal to $\sin^2 x \qquad \cos^2 x \quad 1 + 4\sin 4x$ 3)1295 1)1280 2)1215 4)1040Key: 1 Sol: $C_1 \rightarrow C_1 + C_2 + C_3$ $f(x) = (2+4\sin 4x) \begin{vmatrix} 1 & \cos^2 x & 4\sin 4x \\ 1 & 1+\cos^2 x & 4\sin 4x \\ 1 & \cos^2 x & 1+4\sin 4x \end{vmatrix}$ $1 \cos^2 x$ $4\sin 4x$ $R_2 \to R_2 - R_1$ $R_3 \to R_3 - R_1 = (2 + 4\sin 4x) \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$ m = -2 $= 2 + 4 \sin 4x$ M = 6 $M^4 - m^4 = 1296 - 16 = 1280$ Let the ellipse $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$ and $E_2: \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1, a < B$ have same eccentricity 9. $\frac{1}{\sqrt{3}}$. Let the product of their lengths of latus rectums be $\frac{32}{\sqrt{3}}$ and the distance between the foci of E₁ be 4. If E₁ and E₂ meet at A, B, C and D, then the area of the quadrilateral ABCD equals: 1) $6\sqrt{6}$ 2) $\frac{12\sqrt{6}}{5}$ 3) $\frac{24\sqrt{6}}{5}$ 4) $\frac{18\sqrt{6}}{5}$ Key: 3

<u>**® Sri Chaitanya IIT Academy., India.**</u> Sol:

$$2a\left(\frac{1}{\sqrt{3}}\right) = 4 \Rightarrow a = 2\sqrt{3} \Rightarrow b = 2\sqrt{2}$$

$$\frac{2b^{2}}{a} \times \frac{2A^{2}}{B} = \frac{32}{\sqrt{3}} \Rightarrow \frac{2 \times 8 \times 2b^{2}}{2\sqrt{3}} \times 2\frac{A^{2}}{B^{2}}B = \frac{32}{\sqrt{3}} \Rightarrow \frac{1}{2} \times \frac{2}{3}B = 1 \Rightarrow B = 3 \Rightarrow a = \sqrt{6}$$

$$c_{1} : \frac{x^{2}}{12} + \frac{y^{2}}{9} = 1 \Rightarrow \frac{x^{2}}{6} + \frac{8\left(1 - \frac{x^{2}}{12}\right)}{9} = 1$$

$$\Rightarrow \frac{x^{2}}{6} + \frac{8}{9} - \frac{2x^{2}}{27} = 1 \Rightarrow x^{2}\frac{(9-4)}{54} = \frac{1}{9} \Rightarrow x^{2} = \frac{6}{5} \Rightarrow x = \sqrt{\frac{6}{5}} \Rightarrow y = \sqrt{8 - \left(1 - \frac{x^{2}}{12}\right)}$$

$$\sqrt{8\left(1 - \frac{1}{10}\right)} = \frac{6}{\sqrt{5}} \quad \text{Area} = 4 \times xy = 4\sqrt{\frac{6}{5}} \quad \frac{6}{\sqrt{5}} = \frac{24}{5}\sqrt{6}$$
Let $y = y(x)$ be the solution of the differential equation
$$\cos x(\log_{e}(\cos x))^{2} dy + (\sin x - 3y\sin x\log_{e}(\cos x)) dx = 0, x \in \left(0, \frac{\pi}{2}\right).\text{If}$$

$$y\left(\frac{\pi}{4}\right) = \frac{-1}{\log_{e}2}, y\left(\frac{\pi}{6}\right) \text{ is equal to}$$

$$1) \frac{1}{\log_{e}(4) - \log_{e}(3)} \qquad 2) \frac{1}{\log_{e}(3) - \log_{e}(4)}$$

Key: 2

10.

Solution:

$$\frac{dy}{dx} + \left(\frac{-3\sin x}{\cos x(\ln\cos x)}\right)y = \frac{-\sin x}{\cos x(\ln\cos x)^2}$$
$$IF = e^{\int \frac{-3\sin x}{\cos x \ln\cos x}dx} = e^{\int \frac{3}{t}dt} = e^{3\ln t} = (\ln\cos x)^3$$
$$\ln\cos x = t$$
$$\frac{1}{\cos x}(-\sin x)dx = dt$$
$$y \times (\ln\cos x)^3 = \int (\ln\cos x)^3 \times \frac{-\sin x}{\cos x(\ln\cos x)^2}dx$$

of

<u> Sri Chaitanya IIT Academy., India.</u>

$$y(\ln \cos x)^{3} = \int t \, dt$$

$$\ln \cos x = t \Rightarrow \frac{1}{\cos x} (\sin x) dx = dt$$

$$y(\ln \cos x)^{3} = \frac{(\ln \cos x)^{2}}{2} + C \qquad \Rightarrow c = 0$$

$$y\left(\ln \frac{\sqrt{3}}{2}\right)^{3} = \frac{\left(\ln \frac{\sqrt{3}}{2}\right)^{2}}{2} \qquad \Rightarrow y = \frac{1}{\ln 3 - \ln 4}$$
11. The least value of n for which the number of integral terms in the Binomial expansion
$$\left(\sqrt[3]{7} + \sqrt[3]{11}\right)^{n} \text{ is 183, is:}$$

$$1)2184 \qquad 2)2148 \qquad 3)2196 \qquad 4)2172$$
Key: 1
Sol:
$$\left(\frac{7^{\frac{1}{3}} + 11^{\frac{1}{10}}\right)^{n} K = 0 \qquad l = \frac{n}{12}$$

$$= c_{1}\frac{\pi^{\frac{n}{3}}}{12} K = 4 \qquad l = \frac{n-12}{12}$$

$$n - r = 3k \qquad K = 728 \qquad l = 0$$

$$r = 12l$$

$$n = 3 \times 728$$
12. The number of solutions of the equation
$$\left(\frac{9}{x} - \frac{9}{\sqrt{x}} + 2\right)\left(\frac{2}{x} - \frac{7}{\sqrt{x}} + 3\right) = 0 \quad \text{is:}$$

$$1) 3 \qquad 2) 2 \qquad 3) 1 \qquad 4)4$$
Key: 4
Sol:
$$\left(9 - 9\sqrt{x} + 2x)(2 - 7\sqrt{x} + 3x) = 0$$

$$\sqrt{x} = \frac{9 \pm \sqrt{81 - 72}}{4}, \quad \frac{7 \pm \sqrt{49 - 24}}{6} = \frac{9 \pm 3}{4}, \quad \frac{7 \pm 5}{6}$$

$$= 3_{1}\frac{3}{2}, 2, \frac{1}{3} \Rightarrow x = 9, \frac{9}{4}, 4, \frac{1}{9}$$

🧟 Sri (Chaitanya IIT Academy., I	ndia.		2025_Jee-Main_2	9-Jan-2025_Shift-01
13.	Let $L_1: \frac{x-1}{1} = \frac{y-1}{-1}$	$\frac{-2}{1} = \frac{z-1}{2}$ and L_2 :	$\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$	be two lines	. Let L ₃ be a line
	passing through th	e point (α, β, γ) and	nd be perpendicula	r to both L_1 and	L ₂ . If L ₃
	intersects $L_{1,}$ then	$ 5\alpha - 11\beta - 8\gamma $ ex	quals:		
	1)25	2)18	3)16	4)2	0
Key:	1				
Sol:	$\vec{b} = \begin{vmatrix} i & j & k \\ 1 & -1 & 2 \\ -1 & 2 & 1 \end{vmatrix} = i(-1)$	(5) - j(3) + k(1)			
	$\frac{x-\alpha}{-5} = \frac{y-\beta}{-3} = \frac{z-\gamma}{1}$				
	$\begin{vmatrix} \alpha - 1 & \beta - 2 & \gamma - 1 \\ 1 & -1 & 2 \\ -5 & -3 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} = 0$	$\Rightarrow (\alpha - 1)(5) - (\beta - 2)$	$(11) + (\gamma - 1)(-8)$	= 0
	$\left 5\alpha - 11\beta - 8\gamma\right = 25$				
14.	The integral $80\int_{0}^{\frac{\pi}{4}}$	$\left(\frac{\sin\theta + \cos\theta}{9 + 16\sin 2\theta}\right)d\theta$	is equal to:		
	1) $2\log_e 3$	2) $6\log_e 4$	3) $3\log_e 4$	4) $4\log_e 3$	
Key:	4				
Sol:					
	$\sin\theta - \cos\theta = t \Longrightarrow (\cos\theta)$	$\cos\theta + \sin\theta)dx = dt$			
	$1 - \sin 2\theta = t^2$				
	$80\int_{-1}^{0}\frac{dt}{9-16(1-t^2)} = 5\int_{-1}^{0}$	$\int_{-1}^{0} \frac{dt}{\left(\frac{5}{4}\right)^2 - t^2}$	$=5\frac{1}{2\times\frac{5}{4}} \ln\left \frac{\frac{5}{4}+t}{\frac{5}{4}-t}\right _{-1}^{0}$	1	
	$= 2 \left(\ln 1 - \ln \left(\frac{1/4}{9/4} \right) \right)$	$= 2 \times 2 \ln 3$	$=4 \ln 3$		
15.	Let the line $x + y =$	= 1 meet the circle	$x^2+y^2=4$ at the point	nts A and B. If th	he line
	perpendicular to A	B and passing thro	ugh the mid-point	of the chord AE	3 intersects the
	circle at C and D,	then the area of the	quadrilateral ADE	SC is equal to:	
	1) 2\sqrt{14}	2) 5\sqrt{7}	3) 3√7	4) \sqrt{14}	
Jee-M	ain-2025_Jan Session				7 Page

		,		.025_9ee-main_27-9an-2025_9nn-6
Key:	1			
Sol:	$Area = \left(\frac{1}{2}ABh_1 + \frac{1}{2}\right)$	ABh_2	$=\frac{AB}{2}(h_1+h_2)$	
	$= AB \times 2$	$=2\times 2\sqrt{r^2-d^2}$	$=4\sqrt{4-\left(\frac{1}{\sqrt{2}}\right)^2}$	$=4\frac{\sqrt{7}}{\sqrt{2}}=2\sqrt{14}$
16.	Let $ z_1-8-2i \leq$	1 and $ z_2 - 2 + 6i \le$	$\leq 2, z_1, z_2 \in C$. The	en the maximum value of
	$ z_1 - z_2 $ is:			
	1)7	2) 10	3)13	4)3
Key:	: 1			
Sol:	$\min = \sqrt{(8-2)^2 + (2)^2}$	$(+6)^2 - r_1 - r_2$	=10 - 1 - 2	= 7
17.	Let $\vec{a} = 2\hat{i} - \hat{j} +$	$3\hat{k},\vec{b}=3\hat{i}-5\hat{j}+\hat{k},$	and \vec{c} be a vector	or such that $\vec{a} \times \vec{c} = \vec{c} \times \vec{b}$ and
	$\left(\vec{a}+\vec{c}\right)$. $\left(\vec{b}+\vec{c}\right)=1$	68. Then the maxin	mum value of $\left \vec{c} \right ^2$	is:
	1)462	2)154	3)308	4)77
Key:	3			
Sol:	$(a+b) \times c = 0 \Longrightarrow c =$	$\lambda(a+b)$		
	(a+c).(b+c) = 168	$\Rightarrow a.b + c.(a+b) + c $	$^{2} = 168$	
	$\Rightarrow (6+5+3) + \lambda \times a $	$+b ^{2}+ c ^{2}=168$		
	$\Rightarrow 14 + \lambda \times (25 + 36 +$	$+16) + \lambda^2 (25 + 36 + 16) =$	=168	
	\Rightarrow 77 λ^2 + 77 λ -154	$= 0 \Longrightarrow \lambda^2 + \lambda - 2 = 0 \Longrightarrow$	$>(\lambda+2)(\lambda-1)=0$	$\Rightarrow \lambda = 1, -2$
	$\max c ^{2} = 4 a+b ^{2} =$	$= 4 \times 77 = 308$		
18.	Let ABC be a tri	angle formed by the	lines $7x - 6y + 3 =$	0, x + 2y - 31 = 0 and $9x - 2y - 31 = 0$
	19 = 0 Let the point	int (h, k) be the imag	ge of the centroid o	f $\triangle ABC$ the $3x + 6y - 53 = 0$.
	Then $h^2 + k^2 + hk$	is equal to:		
	1)36	2)40	3)47	4)37
Key:	: 4			
Sol:				
	7x - 6y + 3 = 0	1	$1\&2 \Longrightarrow A(9,11)$	
	x+2y-31=0	2	$2\&3 \Rightarrow B(5,13)$	

Jee-Main-2025_Jan Session

oibal ymobool TII ovantiada i'r 🉈

🧟 Sri Chaitanya IIT Academy., India.	2025 Jee-Main 29-Jan-2025 Shift-01
9x - 2y - 19 = 0 3	$3\&1 \Rightarrow C(3,4)$
$G = \frac{A+B+C}{3} = \left(\frac{17}{3}, \frac{28}{3}\right)$	$\frac{h - \frac{17}{3}}{3} = \frac{k - \frac{28}{3}}{6} = \frac{-2(17 + 56 - 53)}{45} = \frac{-8}{9}$
$(h,k) = (3,4) \Longrightarrow h^2 + k^2 + hk = 37$	
19. Define a relation R on the interval $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\left(0,\frac{\pi}{2}\right)$ by x R y if and only if $\sec^2 x - \tan^2 y = 1$ Then
R is	
1) Both reflexive and symmetric but	not transitive
2) An equivalence relation	
3) Reflexive but neither symmetric n	not transitive
4) Both reflexive and transitive but ne	ot symmetric
Key: 2	
Sol:	
$x = y$ $(x, x) \Rightarrow$ reflexive	
$(x, y) \Rightarrow (y, x) \Rightarrow symmetric$	
$(x, y), (y, z) \Rightarrow (x, z) \Rightarrow$ transistive	
Equivalence	
20. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 7\hat{j} + 3$	\hat{k} . Let $L_1: \vec{r} = \left(-\hat{i}+2\hat{j}+\hat{k}\right) + \lambda \vec{a}, \ \lambda \in \mathbb{R}$ and
$L_2: \vec{r} = (\hat{j} + \hat{k}) + \mu \vec{b}, \mu \in R$ be two li	ines. If the line L_3 passes through the point of
intersection of L_1 and L_2 , and is paral	llel to $\vec{a} + \vec{b}$, then L ₃ passes through the point:
1) (2, 8, 5) 2) (8, 26, 12)	3) (5, 17, 4) 4) (-1, -1, 1)
Key: 2	
Sol: $(-1+\lambda, 2+2\lambda, 1+\lambda) = (2\mu, 1+7\mu, 1+3\mu)$	
$2\mu - \lambda + 1 = 0 1 \implies 4\mu - 2\lambda + 2 = 0$	
$7\mu - 2\lambda - 1 = 0 \qquad27\mu - 2\lambda - 1 =$	$0 - 3\mu + 3 = 0$ $\mu = 1$
$P(2,8,4)$ $\vec{a} + \vec{b} = (3i+9j+4k)$	k)
$\frac{x-2}{3} = \frac{y-8}{9} = \frac{z-4}{4} = t$	(8,26,12) Satisfies

Jee-Main-2025_Jan Session

Г

2025 Jee-Main 29-Jan-2025 Shift-01

(NUMERICAL VALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to second decimal place. (e.g. 6.25, 7.00, 0.33, 30, 30.27, 127.30). Attempt any five questions out of 10.

Marking scheme: +4 for correct answer, 0 if not attempted and 0 in all other cases.

👧 Sri Chaitanya IIT Academy., India.

2025 Jee-Main 29-Jan-2025 Shift-01

Key: 1405

Sol:

All same = $5_{c_1} \times \frac{6!}{6!} = 5$ 2 same, 4 same = $5_{c_2} \times 2 \times \frac{6!}{4!2!}$ = 300 3 same, 3 same = $5_{c_2} \times \frac{6!}{3!3!}$ = 200 2 same, 2 same, 2 same = $5_{c_3} \times \frac{6!}{2!2!2!}$ = $10 \times 9 = 900$ Total = 1405

2025 Jee-Main 29-Jan-2025 Shift-01

Max Marks: 100

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.
26. A coil of area A and N turns is rotating with angular velocity @ & in a uniform magnetic

field \vec{B} about an axis perpendicular to \vec{B} . Magnetic flux φ and induced emf \mathcal{E} across it,

at an instant when \vec{B} is parallel to the plane of coil, are:

1)
$$\varphi = AB, \varepsilon = 0$$

2) $\varphi = AB, \varepsilon = NAB\omega$
3) $\varphi = 0, \varepsilon = NAB\omega$
4) $\varphi = 0, \varepsilon = 0$

Key: 3

SOL:

$$\emptyset = \overline{B} \cdot \overline{A} = NBA \cos\theta = NBA \cos 90^{0} = 0$$
$$e = \frac{-d\emptyset}{dt} = \frac{d}{dt} (NBA \cos\theta) = -\frac{d}{dt} (NBA \cos \omega t)$$
$$= NBA\omega \sin wt = NAB\omega$$

27. Consider I_1 and I_2 are the currents flowing simultaneously in two nearby coils 1 & 2, respectively. If L_1 = self-inductance of coil 1, M_{12} = mutual inductance of coil 1 with respect to coil 2, then the value of induced emf in coil 1 will be

1)
$$\varepsilon_{1} = -L_{1} \frac{dI_{1}}{dt} - M_{12} \frac{dI_{1}}{dt}$$

2) $\varepsilon_{1} = -L_{1} \frac{dI_{1}}{dt} - M_{12} \frac{dI_{2}}{dt}$
3) $\varepsilon_{1} = -L_{1} \frac{dI_{2}}{dt} - M_{12} \frac{dI_{1}}{dt}$
4) $\varepsilon_{1} = -L_{1} \frac{dI_{1}}{dt} - M_{12} \frac{dI_{2}}{dt}$

Key: 4

Sol:

$$I_{1} \qquad M_{12}$$

$$\epsilon_{1} = -L_{1} \frac{dI_{1}}{dt} - M_{12} \frac{dI_{2}}{dt}$$

🧟 Sri Chaitanya IIT Academy., India.	2025 Jee-Main 29-Jan-2025 Shift-01
28. Match List - I with List - II.	
L1ST - I	List - II
A) Electric field inside (distance $r > 0$ from center)	I) σ/\mathcal{E}_0
Of a uniformly charged spherical shell with	
Surface charge density σ , and radius R.	
B) Electric field at distance r>0 from a uniformly	II) $\sigma/2\varepsilon_{_0}$
Charged infinite plane sheet with surface	
Charge density σ .	
C) Electric field outside (distance r>0 from center)	III) 0
Of a uniformly charged spherical shell with surface	2
Charge density σ , and radius R.	
	σ
D) Electric field between 2 oppositely charged inf	timite IV) $\frac{1}{\varepsilon_0 r^2}$
Plane parallel sheets with uniform surface charge	Les SA
Density σ.	
Choose the correct answer from the options given b	below:
1) (A)-(IV), (B)-(I), (C)-(III), (D)-(II) 2) (A)-(IV), (B)-(I), (C)-(III), (D)-(II) 2) (A)-(IV), (B)-(I), (C)-(III), (D)-(II) 2) (A)-(IV), (D)-(IV),	A)- (III), (B)-(II), (C)-(IV), (D)-(I)
3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I) 4) (A	A)- (II), (B)-(I), (C)-(IV), (D)-(III)
Key: 2	
Sol: A) Electric field inside spherical shell is zero	In the second
B) Electric field on a infinite plane sheet is $\frac{\sigma}{2 \in \Omega_0}$	
C) Electric field outside aspherical shell is $\frac{KQ}{r^2}$	
$\frac{Q}{4\pi R^2} = \sigma \rightarrow Q = \sigma 4R\pi^2 \rightarrow Electric \text{ field is } \frac{\sigma}{\epsilon_0} \frac{R}{r^2}$	$\frac{2}{2}$
D) Electric field is between 2 opposite changed inf	inite parallel plates = σ/ϵ_0
29. If λ and K are de Broglie wavelength and kinetic e	energy, respectively, of a particle with
Constant mass. The correct graphical representation	n for the particle will be

$\sin\theta_{2C} - \sin\theta_{1C} = \frac{1}{2}$	$\frac{n_1(2-1)}{2} = \frac{1}{2}$	
$\frac{n_1}{n_1} - \frac{n_1}{n_1} = \frac{1}{n_1}$	$\overline{n_2}$ $\left(\overline{3} 1\right)^{-}\overline{2}$	
$n_3 n_2 2$	$\frac{n_1}{2} = \frac{1}{2} \left(-\frac{3}{2} \right)$	not exist
$n_1\left(\frac{n_2}{n_3}-1\right) = \frac{1}{2}$	$n_2 2 \begin{pmatrix} 1 \end{pmatrix}$	

31. The pair of physical quantities not having same dimensions is:

- 1) Angular momentum and Planck's constant
- 2) Surface tension and impulse
- 3) Pressure and Young's modulus
- 4) Torque and energy

<u> Sri Chaitanya IIT Academy., India</u>.

Key: 2

$$[Surafce Tension] = \frac{[F]}{[\ell]} = M^{1}L^{0}T^{-2}$$
$$= M^{1}T^{-2}$$

Sol:

 $impulse(J) = m\Delta V$

 $= MLT^{-1}$

32. The fractional compression $\left(\frac{\Delta V}{V}\right)$ of water at the depth of 2.5 km below the sea level is

<u>%</u>. Given, the Bulk modulus of water = $2 \times 10^9 Nm^{-2}$, density of water = 10^3 kg m^{-3} , acceleration due to gravity =g=10m s⁻²

1)1.5 2) 1.0 3) 1.75 4)1.25

Key: 4

Sol:

$$K = \frac{P\Delta V}{\Delta V} (Bulk \mod ulus)$$
$$\frac{\Delta V}{V} = -\frac{P}{K} = -$$

The fraction of compression = $-\frac{\Delta V}{V} \times 100$

<u> Sri Chaitanya IIT Academy., India</u>

$$= \frac{P}{K} \times 100$$
$$= \frac{heg}{K} \times 100$$
$$= \frac{2.5 \times 10 \times 10 \times 10}{2 \times 107} \times 100$$
$$= 1.25\%$$

A body of mass 'm' connected to a massless and unstretchable string goes in vertical 33. circle of radius 'R 'under gravity g. The other end of the string is fixed at the center of circle. If velocity at top of circular path is $n\sqrt{gR}$, where, $n \ge 1$, then ratio of kinetic energy of the body at bottom to that at top of the circle is

1)
$$\frac{n+4}{n}$$
 2) $\frac{n}{n+4}$ 3) $\frac{n^2+4}{n^2}$ 4) $\frac{n^2}{n^2+4}$

Key: 3

Sol:

 $\mathcal{G}_1 = n\sqrt{gr}$ At bottom $K_1 = \frac{1}{2}m\mathcal{P}_1^2$ At top $K_2 = \frac{1}{2}m\theta_2^2$ But $\theta_1^2 = \theta_2^2 + 4gr$ $= n^2 gR + 4 gR$ $=(n^{2}+4)gR$ $\therefore \frac{K_1}{K_2} = \frac{\frac{1}{2}m\theta_1^2}{\frac{1}{2}m\theta_2^2} = \frac{(n^2 + 4)}{(n\sqrt{gR})^2} = \frac{n^2 + 4}{n^2}$

34.

An electric dipole of mass m, charge q, and length *l* is placed in a uniform electric field $\vec{E} = E_0 \hat{i}$. when the dipole is rotated slightly from its equilibrium position and released, the time period of its oscillations will be:

1)
$$2\pi \sqrt{\frac{ml}{2qE_0}}$$
 2) $\frac{1}{2\pi} \sqrt{\frac{ml}{2qE_0}}$ 3) $2\pi \sqrt{\frac{ml}{qE_0}}$ 4) $\frac{1}{2\pi} \sqrt{\frac{2ml}{qE_0}}$

Key: 2

<u> Sri</u>	Chaitanya IIT Academy., India. 2025_Jee-Main_29-Jan-2025_Shift-01
37.	Given below are two statements: one is labelled as Assertion (A) and the other is labelled
	as Reason (R).
	Assertion (A): Electromagnetic waves carry energy but not momentum. Reason (R):
	Mass of a photon is zero.
	In the light of the above statements, choose the most appropriate answer from the options
	given below:
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)
	2) (A) is true but (R) is false
	3) (A) is false but (R) is true
	4) Both (A) and (R) are true but (R) is not the correct explanation of (A)
Key:	3
Sol:	EM waves are like photon's so they carry energy & momentum
	Assertion is false
	Rest mass of photon = 0
	Reason is true
38.	Given below are two statements: one is labelled as Assertion (A) and the other is labelled
	as Reason (R).
	Assertion (A): Choke coil is simply a coil having a large inductance but a small
	resistance. Choke coils are used with fluorescent mercury-tube fittings. If household
	electric power is directly connected to a mercury tube, the tube will be damaged.
	Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor
	$\left(\frac{R}{\sqrt{R^2 + \omega^2 L^2}}\right)$, where ω is frequency of the supply across resistor R and inductor L. If the
	choke coil were not used, the voltage across the resistor would be the same as the applied
	voltage. In the light of the above statements, choose the most appropriate answer from
	the options given below:
	1) Both (A) and (R) are true but (R) is not the correct explanation of (A)
	2) (A) is false but (R) is true

- 3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 4) (A) is true but (R) is false

Key: 3

<u> Sri Chaitanya IIT Academy., India</u>.

Sol:

$$I = \frac{V_{vms}}{Z} = \frac{V_{vms}}{\sqrt{R^2 + \omega^2 L^2}} \text{ take resistance of coil almost zero}$$
$$V_R = IR$$
$$= \frac{V_{vms}}{\sqrt{R^2 + \omega^2 L^2}} \times R \rightarrow V_{vms} \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$$

Given assertion & reason is true & reason us correct explanation of assertion.

39. Two projectiles are fired with same initial speed from same point on ground at angles of $(45^{\circ} - \alpha)$ and $(45^{\circ} + \alpha)$, respectively, with the horizontal direction. The ratio of their maximum heights attained is:

1)
$$\frac{1+\sin 2\alpha}{1-\sin 2\alpha}$$
 2) $\frac{1-\sin 2\alpha}{1+\sin 2\alpha}$ 3) $\frac{1+\sin \alpha}{1-\sin \alpha}$ 4) $\frac{1-\tan \alpha}{1+\tan \alpha}$

Key: 2

Sol:

$$\frac{H_1}{H_2} = \frac{\sin^2(45^0 - \alpha)}{\sin^2(45 + \alpha)} = \left(\frac{\cos\alpha - \sin\alpha}{\cos\alpha + \sin\alpha}\right)^2$$
$$\frac{H_1}{H_2} = \frac{1 - 2\sin\alpha\cos\alpha}{1 + 2\sin\alpha\cos\alpha}$$
$$= \frac{1 - \sin 2\alpha}{1 + \sin 2\alpha}$$

40.

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.

Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa.

In the light of the above statements, choose the most appropriate answer from the options given below:

1) (A) is true but (R) is false

2) Both (A) and (R) are true and (R) is the correct explanation of (A)

3) Both (A) and (R) are true but (R) is not the correct explanation of (A)

4) (A) is false but (R) is true

👧 Sri Chaitanya IIT Academy., India.

Key: 2

Sol:
$$g_{top} < g_{bottom} \Rightarrow As T \alpha \sqrt{\frac{1}{g}} \Rightarrow T_{top} > T_{bottam}$$

41. As shown below, bob A of a pendulum having massless string of length 'R' is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a friction less table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take 'g ' as acceleration due to gravity.)

Key: 3

Sol:

$$\mathcal{G}_{1} = \sqrt{2gR(1 - \cos 60)} = \sqrt{gR}$$
$$\mathcal{G}_{1} = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right)u_{1} \& u_{2} = 0 = \left(\frac{m - m/2}{m + m/2}\right)\sqrt{gr} = \frac{1}{3}\sqrt{gr}$$

42. Consider a long straight wire of a circular cross-section (radius a) carrying a steady current I. The current is uniformly distributed across this cross-section. The distances from the center of the wire's cross-section at which the magnetic field [inside the wire, outside the wire] is half of the maximum possible magnetic field, anywhere due to the wire, will be

$$1)\left[\frac{a}{2},3a\right] \qquad 2)\left[\frac{a}{2},2a\right] \qquad 3)\left[\frac{a}{4},\frac{3a}{2}\right] \qquad 4)\left[\frac{a}{4},2a\right]$$

Key: 2

Sol:

<u> Sri</u>	Chaitanya IIT Academy., India.	2025_Jee-Main_29-Jan-2025_Shift-01
	$B_{\max} = \frac{\mu o i}{2\pi R}, B_{in} = \frac{1}{2} B_{\max}, \frac{\mu_o i r^2}{2\pi R} = \frac{1}{2} \cdot \frac{\mu_0 i}{2\pi R},$	$r = \frac{R}{2}, r = \frac{a}{2}$
	$B_{rout} = \frac{1}{2} B_{man}, \frac{\mu_o i}{2\pi r} = \frac{1}{2} \cdot \frac{\mu_o i}{2\pi R}, r = 2R, r = 2a, \left(-\frac{1}{2} + \frac{\mu_o i}{2\pi R}, r = 2A, r = 2a, \left(-\frac{1}{2} + \frac{\mu_o i}{2\pi R}, r = 2A, r = 2a, \left(-\frac{1}{2} + \frac{\mu_o i}{2\pi R}, r = 2A, r = 2$	$\left(\frac{a}{2}, 2a\right)$
43.		
		—Y
	For the circuit shown above, equivalent GATE is	
	1)AND gate 2) OR gate 3) NAND gate	ate 4) NOT gate
Key:	2	
Sol:	$Q = \overline{\left(\overline{A \bullet B}\right) \bullet \left(\overline{A + B}\right)} = \overline{\overline{A \bullet B}} + \overline{\overline{A + B}} = A \bullet B + A + B$	$B = A(B+1) + B = A + B \therefore OR \text{ gate}$
44.	The work done in an adiabatic change in an ideal	gas depends upon only:
	1) change in its temperature 2) change	in its pressure
	3) Change in its volume 4) change	in its specific heat
Key:	1	
Sol:	Work done dw = - dy $= \frac{-nR}{\Upsilon - 1}$	$[\Delta t]$
	Depends on change in temperature.	
45.	Given below are two statements: one is labelled a	as Assertion (A) and the other is labelled
	as Reason (R).	

Assertion (A): Emission of electrons in photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photo emissive substance. Reason (R): A negative electric potential, which stops the emission of electrons from the surface of a photo emissive substance, varies linearly with frequency of incident radiation.

In the light of the above statements, choose the most appropriate answer from the options given below:

1) (A) is false but (R) is true

2) (A) is true but (R) is false

3) Both (A) and (R) are true and (R) is the correct explanation of (A)

4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Key: 4

Sol: $V_s = \frac{h}{e}(f_0 - f), V_s$ Varies linearly with f but R does not explain suppression of electron.

(NUMERICAL VALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to second decimal place. (e.g. 6.25, 7.00, 0.33, 30, 30.27, 127.30). Attempt any five questions out of 10.

Marking scheme: +4 for correct answer, 0 if not attempted and 0 in all other cases.

46. The coordinates of a particle with respect to origin in a given reference frame is (1, 1, 1) meters. If a force of $\vec{F} = \hat{i} - \hat{j} + \hat{k}$ acts on the particle, then the magnitude of torque (with respect to origin) in z-direction is _____.

Key: 2

Sol:
$$T = \overline{r} \times \overline{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = (1+1)\hat{i} - (1-1)\hat{j} + (-1-1)\hat{K} = 2\hat{i} - 2\hat{k}, |\overline{T_z}| = 2\hat{K}, |\overline{T_z}| = 2\hat{K}$$

47. Two light beams fall on a transparent material block at point 1 and 2 with angle θ_1 , and θ_2 , respectively, as shown in figure. After refraction, the beams intersect at point 3 which is exactly on the interface at other end of the block.

Given: the distance between 1 and 2, $d = 4\sqrt{3}$ cm and $\theta_1 = \theta_2 = \cos^{-1}\left(\frac{n_2}{2n_1}\right)$ where refractive

Index of the block $n_2 >$ refractive index of the outside medium n_1 , then the thickness of the Block is ______ cm.

1) Given
$$\theta_1 = \theta_2 = \cos^{-1}\left(\frac{n_2}{2n_1}\right) \Rightarrow \cos\theta_1 = \frac{n_2}{2n_1}$$

2)
$$n_1 \sin(90 - \theta_1) = n_2 \sin r, n_1 \cos \theta_1 = n_2 \sin r, n_2 \sin r = n_R \times \frac{n_2}{2n_1}, \sin r = 30^{\circ}$$

$$\tan r = \frac{2\sqrt{3}}{CB} \qquad CB = \frac{2\sqrt{3}}{\tan r}, CB = \frac{2\sqrt{3}}{\tan 30^{\circ}} \qquad = 2\sqrt{3} \times \frac{\sqrt{3}}{1} \qquad = 6$$

A container of fixed volume contains a gas at 27° C. To double the pressure of the gas, **48**. the temperature of gas should be raised to °C.

Key: 327

Sol: At constant volume, $P\alpha T$, $P_1 = P_1$, $P_2 = 2P$

$$\frac{T_2}{T_1} = \frac{P_2}{P_1}$$

$$T_2 = (273 + 27)\frac{2H}{P}$$

$$T_2 = 600K$$

$$t_2 = 600 - 273$$

$$t_2 = 327^{\circ}c$$

In a hydraulic lift, the surface area of the input piston is 6 cm² and that of the output **49**. piston is 1500 cm². If 100 N force is applied to the input piston to raise the output piston by 20 cm, then the work done is kJ.

Key: 5

Sol:
$$A_1 = 61m^2, A_2 = 1500 cm^2, F_1 = 100N$$

$$W = P\Delta V = \frac{F_1}{A_1} \times (A_2 \times 4) = \frac{100}{6 \times 10^{-4}} \times (500 \times 10^{-4}) = 5000 \ J, 5 \ KJ$$

50. The maximum speed of a boat in still water is 27 km/h. Now this boat is moving Downstream in a river flowing at 9 km/h. man in the boat throws a ball vertically upwards With speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank, is cm. (Take $g = 10 \text{ m/s}^2$)

Key: 2000 cm

Sol:
$$27 + 36 \ kmph = 36 \times \frac{5}{18} = 10 \ ms^{-1}$$
,

$$u_x = u_g = 100 \ ms^{-1}Range = u_x \times \frac{2u_y}{10} = 10 \times \frac{2 \times 10}{10}, = 20m = 2000 \ cm$$

,

<u>®</u> Sri	i Chaitanya IIT Academy., India.	2025 Jee-Main 29-Jan-2025 Shift-01
CHE	EMISTRY (CDUCLE CODE	Max Marks: 100
This se ONE o	(SINGLE CORF ection contains 20 multiple choice questions. Each ques option can be correct.	tion has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY
Marki	ing scheme: +4 for correct answer, 0 if not attempted The correct option with order of melti	l and -1 in all other cases.
51.	The context option with order of meth	ing points of the pairs
	(Min, Fe), (Ic, Ru) and (Re, Os) is:	
	Options	
	1) Fe \leq Mn, Ru \leq Tc and Os \leq Re	2) Mn < Fe, Tc < Ru and Re < Os
	3) Fe $<$ Mn, Ru $<$ Tc and Re $<$ Os	4)Mn < Fe, Tc < Ru and Os < Re
Key:	: 4	
Sol:	Metals Mn and Tc have unusually low	wm.pt though having five unpaired electrons but
	metal Re has expected higher m.pt that	an Osmium
52.	The molar conductivity of a weak elec	ctrolyte when plotted against the square root of its
	concentration, which of the following	is expected to be observed?
	1) A small increase in molar conducti	vity is observed at infinite dilution.
	2) A small decrease in molar conduction	vity is observed at infinite dilution.
	3) Molar conductivity decreases sharp	bly with increase in concentration.
	4) Molar conductivity increases sharp	ly with increase in concentration.
Key:	: 3	
Sol:	Due to suppression of dissociation of	weak electrolyte at higher concentration the molar
	conductivity decreases shorply.	
53.	1.24 g of AX_2 , (molar mass 124 g mo	¹⁻¹) is dissolved in 1 kg of water to form a solution
	with boiling point of 100.0156°C, whi	ile 25.4 g of AY ₂ , (molar mass 250 g mol ⁻¹) in 2 kg
	of water constitutes a solution with a	boiling point of 100.0260°C.
	$K_b(H_2O)=0.52 \text{ K kg mol}^{-1}$ Which of t	he following is correct?
	1) AX ₂ is completely unionised while	AY ₂ is fully ionised.
	2) AX_2 and AY_2 (both) are fully ionis	ed.
	3) AX ₂ is fully ionised while AY ₂ is c	ompletely unionised.
	4) AX_2 and AY_2 (both) are completely	y unionised.
Key:	: 3	
Col.	ΔTb	
501:	$\iota - \frac{1}{k_b \times m}$	

👧 Sri Chaitanya IIT Academy., India. 2025 Jee-Main 29-Jan-2025 Shift-01

 $Ax_2 i = \frac{0.0156}{0.52 \times 10^{-2}} = 3$ $Ay_2 \ i = \frac{0.0260}{0.52 \times 0.05} = 1$

If a₀ is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie 54. Wavelength (λ) of the electron present in the second orbit of hydrogen atom? [n: any integer]

1)
$$\frac{2a_0}{n\pi}$$
 2) $\frac{4n}{\pi a_0}$ 3) $\frac{8\pi a_0}{n}$ 4) $\frac{4\pi a_0}{n}$

Key: 3

Sol:
$$r_n = \frac{a_o n^2}{z}$$
 For 2nd orbit $r_n = \frac{a_o 2^2}{1} = 4a_o$
 $n\lambda = 2\pi r_n$ $\lambda = \frac{2\pi 4a_o}{2} = 4\pi a_o = \frac{8\pi a_o}{n}$ where $n = 2$
55. The reaction A₂+ B₂ \rightarrow 2AB follows the mechanism
 $A_2 \xrightarrow{k_1} A + A$ (fast)
 $A + B_2 \xrightarrow{k_2} AB + B$ (slow)
 $A + B \rightarrow AB$ (fast)
T he overall order of the reaction is:

1)1.5 2)2 4)3 3)2.5

17 1

Key: 1
Sol : Rate of slowest step
$$r = k_2[A][B_2]$$

From step 1) $K = \frac{[A]^2}{[A_2]} \text{ or } [A] = k^{1/2}[A_2]^{1/2}$
 $r = k_2 k^{1/2}[A_2]^{1/2}[B_2] = k[A_2]^{1/2}[B_2]$
Over all order of reaction $= \frac{1}{2} + 1 = 1.5$
56. Total number of nucleophiles from the following is:
 $NH_3, PhSH_3(H_3C)_2 S, H_2C = CH_2, OH, H_3O^{\oplus}, (CH_3)_2 CO, > = NCH_3$
1) 5 2) 4 3) 7 4)6
Key: 4

2025 Jee-Main 29-Jan-2025 Shift-01

Sol: Nucleophiles NH_3 , phSH, $CH_2 = CH_2$, OH^- , (CH_3) , Co

 $>= NCH_3$

- 57. Match List-I with List-II
 - List-I

List-II

(Carbohydrate)	(Linkage Source)
A) Amylose	I) $\beta - C_1 - C_4$, plant
B) Cellulose	II) $\alpha - C_1 - C_4$, animal
C) Glycogen	III) $\alpha - C_1 - C_4, \alpha - C_1 - C_6$, plant
D) Amylopectin	IV) $\alpha - C_1 - C_4$, plant

Choose the correct answer from the options given below:

1) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)	2) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)	4. (A)-(IV), (B)-(I), (C)-(III), (D)-(II)

Key: 3

Sol: Amylose $\alpha - C_1 - C_4$, plant

Cellulose $\beta - C_1 - C_4$, plant

Glycogen $\alpha - C_1 - C_4$, animal

Amylopectin
$$\alpha - C_1 - C_4, \alpha - C_1 - C_6$$
, plant

Amylose and Amylopectin present in starch.

58. The standard reduction potential values of some of the p-block ions are given below. Predict the one with the strongest oxidizing capacity.

1) $E_{TI^{3+}/TI}^{-} = +1.26V$ 2) $E_{AI^{3+}/AI}^{-} = -1.66V$ 3) $E_{SI^{4+}/SI^{2+}}^{-} = +1.15V$ 4) $E_{Pb^{4+}/Pb^{2+}}^{-} = +1.67V$

Key: 4

Sol: Higher the value of E^0 standard reduction potential stronger is the oxidising capacity.

59. The product (P) formed in the following reaction is:

Sol: Zn-Hg, HCl will reduce aldehyde anf ketone carbonyl to methylene and will not reduce ester

60. Match List - I with List - II.

List-1	List - II
(Complex)	(Hybridization & Magnetic characters)
(A) $[MnBr_4]^{2-}$	I) d ² sp ³ & diamagnetic
(B) $[FeF_6]^{3-}$	(II) sp ³ d ² & paramagnetic
(C) $[Co(C_2O_4)]^{3-}$	(III) sp ³ & diamagnetic
(D) [Ni(CO) ₄]	(IV) sp ³ & paramagnetic
Choose the correct answer from the c	options given below:
1) (A)-(IV), (B)-(I), (C)-(II), (D)-(II	I) 2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
3) (A)-(IV), (B)-(II), (C)-(I), (D)-(III) 4) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
3	

Key:

<u> Sri Chaitanya IIT Academy., India.</u> 2025 Jee-Main 29-Jan-2025 Shift-01 Sol: $[MnBr_4]^2$ d⁵ and weak field ligand-sp³ d⁵ and weak field ligand-sp³ d² $[FeF_{6}]^{3-}$ $[Co(C_2O_4)]^{3-}$ d⁶ chelating ligand d²sp³ $[Ni(CO)_4]$ d¹⁰, strong ligand 61. The steam volatile compounds among the following are: OHOHNH, C) NH_{2} D) B) A) NO. NO, H,NHØ Choose the correct answer from the options given below 1) (B) and (D) Only (A) and (C) Only (A) and (B) Only 4) (A), (B) and (C) Only Key: 3 Sol: Compounds A and B has intra molecular H-bond and hence is steam volatile. 62. Given below are two statements: Statement (I): The radii of isoelectronic species increases in the order. $Mg^{2+} < Na^+ < F^- < O^{2-}$ Statement (II): The magnitude of electron gain enthalpy of halogen decreases in the Cl > F > Br > Iorder. In the light of the above statements, choose the most appropriate answer from the options given below: 1) Statement I is incorrect but Statement II is correct 2) Both Statement I and Statement II are correct 3) Statement I is correct but Statement II is incorrect 4) Both Statement I and Statement II are incorrect Key: 2 Radii of isoelectronic species decrease with increase in cationic charge and increase with Sol: increase in anionic charge Due to small size, fluorine has lower electron gain enthalpy than chlorine. At temperature T, compound $AB_{2(g)}$ dissociates as $AB_{2(g)} \rightleftharpoons AB_{(g)} + \frac{1}{2}B_{2(g)}$ having degree 63. of dissociation x (small compared to unity). The correct expression for x in terms of K_p and p is 1) $\sqrt{K_P}$ 2) $\sqrt[3]{\frac{2K_P^2}{P}}$ 3) $\sqrt[4]{\frac{2K_P}{P}}$ 4) $\sqrt[3]{\frac{2K_P}{P}}$

Key: 2

👧 Sri Chaitanya IIT Academy., India.

Sol:

$$AB_{2} \xrightarrow{x} AB + \frac{1}{2}B_{2}$$

$$1-x \qquad x \qquad \frac{x}{2}$$
Total moles
$$2 + \frac{x}{2}k_{p} = \frac{\left(\frac{2x}{2+x}\right)P\left(\frac{x}{2+x}\right)^{1/2}P^{1/2}}{\left(\frac{1-x}{2+x}\right)P}$$

 $\sin cex is small 1 - x = 1$ 2 + x = 2

$$\left(\frac{x^3}{2}\right)^{1/2} = \frac{K_p}{p^{1/2}} \quad x = \sqrt[3]{\frac{2K^2p}{p}}$$

64. Match List - I with List - II.

List – I

(Structure)

List - II (IUPAC Name)

(I) 4-Methylpent-1-ene

A)
$$H_{3}C - CH_{2} - CH - CH_{2} - CH - C_{2}H_{5}$$

$$| C_{2}H_{5} - CH_{3}$$

$$(B) \left(CH_3\right)_2 C \left(C_3H_7\right)_2$$

C)

(II) 3-Ethyl-5-methylheptane

(III) 4, 4-Dimethylheptane

(IV) 2-Methyl-1, 3-pentadiene

Choose the correct answer from the options given below:

1) (A)-(III), (B)-(II), (C)-(I), (D)-(IV) 2) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

3) (A)-(III), (B)-(II), (C)-(IV), (D)-(I) 4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)

Key: 2

2025 Jee-Main 29-Jan-2025 Shift-01

Sol: A & B – Longest continuous carbon chain C & D –Double bond should be given preference.

65. 500 J of energy is transferred as heat to 0.5 mol of Argon gas at 298 K and 1.00 atm. The final temperature and the change in internal energy respectively are:

Given: R=8.3 JK⁻¹ mol⁻¹

1) 348 K and 300 J	2) 378 K and 500 J
3) 368 K and 500 J	4)378 K and 300 J

Key: 1

Sol: $\Delta H = nc_p \Delta T$

$$500 = 0.5 \times \frac{5}{2} 8.314 (T - 298)$$
$$T = 348$$
$$\Delta U = nc_{v} \Delta T$$
$$= 0.5 \times \frac{3}{2} \times 8.314 \times 50 = 300$$

66. For a $Mg |Mg^{2+}(aq)| |Ag^{+}(aq)| Ag$ the correct Nernst Equation is:

1)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]}{\left[Mg^{2+}\right]}$$
2)
$$E_{cell} = E_{cell}^{0} + \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2+}\right]}$$
3)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2+}\right]}$$
4)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} \ln \frac{\left[Mg^{2+}\right]}{\left[Ag^{+}\right]}$$

Key: 2

Sol: Cell reaction $Mg_{(g)} + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$

$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} \ln \frac{\left[Mg^{2^{+}}\right]}{\left[Ag^{+}\right]^{2}}$$
$$E_{cell} = E_{cell}^{0} + \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2^{+}}\right]}$$

<u>®</u> Sri C	haitanya IIT Academy., India. 2025_Jee-Main_29-Jan-2025_Shift-01
67.	The correct increasing order of stability of the complexes based on Δ_0 , value is:
	I. $[Mn(CN)_6]^{3-}$ II. $[Co(CN)_6]^{4-}$ III. $[Fe(CN)_6]^{4-}$ IV. $[Fe(CN)_6]^{3-}$
	1) II < III < IV 2) IV < III < II < I 3) III < II < IV < I 4) I < II < IV < III
Key: 4	4
Sol:	More the number of t ₂ g electron more is stability
	$[Mn(CN)_6]^{3-} t_{2g}^4 eg^0 CFSE = -1.6 \ \Delta_0 \ [Co(CN)_6]^{4-} t_{2g}^6 eg^1 \ CFSE = -1.8 \ \Delta_0$
	$[Fe(CN)_6]^{4-} t_{2g}^6 eg^0 CFSE = -2.4 \ \Delta_0 [Fe(CN)_6]^{3-} t_{2g}^2 eg^0 \ CFSE = -2.0 \ \Delta_0$
68.	An element 'E' has the ionisation enthalpy value of 374 kJ mol ⁻¹ , 'E' reacts with elements
	A, B, C and D with electron gain enthalpy values of -328,-349,-325 and -295 kJ mol ⁻¹ ,
	respectively.
	The correct order of the products EA, EB, EC and ED in terms of ionic character is:1) $ED > EC > EB > EA$ 2) $EB > EA > EC > ED$ 3) $EA > EB > EC > ED$ 4) $ED > EC > EA > EB$
Key: 2	2 Solution more the electronegativity difference more is jonic character. Given AH are gr
501.	Solution more the electronegativity difference more is folic character . Given ΔT_{eg} are gr 17
	Halogens A-Cl, B-F, C-Br, D-I
69.	In the following substitution reaction: B_{r}
	Br
	$\bigcirc \qquad \xrightarrow{C_2H_5ONa} P_{\text{Pr}oduct}$
	NO_2 Product 'P' formed is :
1	Rr
	Br Br OC_2H_5 OC_2H_5
	1) OC_2H_5 Br OC_2H_5
	$(\begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1$
	OC_2H_5 NO_2 NO_2 NO_2
Key: 3	3
Sol:	In SnAr, Leaving group para to electron withdrawing group is more prone for
	substitution

70. Choose the correct statements.

(A) Weight of a substance is the amount of matter present in it.

(B) Mass is the force exerted by gravity on an object.

(C) Volume is the amount of space occupied by a substance.

(D) Temperatures below 0°C are possible in Celsius scale, but in Kelvin scale negative

Temperature is not possible.

(E) Precision refers to the closeness of various measurements for the same quantity.

Choose the correct answer from the options given below:

1) (B), (C) and (D) Only (A), (B) and (C) Only

3) (C), (D) and (E) Only 4) (A), (D) and (E) Only

Key: 3

Weight is force exerted by gravity and mass is amount of substance. Sol:

(NUMERICAL VALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to second decimal place. (e.g. 6.25, 7.00, 0.33, 30, 30.27, 127.30). Attempt any five questions out of 10.

Marking scheme: +4 for correct answer, 0 if not attempted and 0 in all other cases.

The molar mass of the water insoluble product formed from the fusion of chromite ore 71.

(FeCr₂O₄) with Na₂CO₃ in presence of O₂ is $g \text{ mol}^{-1}$.

Key: 160

Sol: Fe₂O₃ is water insoluble

 $4FeCr_{2}O_{4} + 8Na_{2}CO_{3} + 7O_{2} \rightarrow 8Na_{2}CrO_{4} + 2Fe_{2}O_{3} + 8CO_{2}$

72. If A₂B is 30% ionised in an aqueous solution, then the value of van't Hoff factor (i) is

x10⁻¹.

Key: 16

 $A_2 B \rightleftharpoons 2A^+ + B^{2-}$ Sol: $1-\alpha$ 2α

Total Particle: $1 + 2\alpha = i, \alpha = 0.3$ $1.6 = 16 \times 10^{-1}$

α

73. The sum of sigma (σ) and pi (π) bonds in Hex-1,3-dien-5-yne is

Key: 15

👧 Sri Chaitanya IIT Academy., India.

👧 Sri Chaitanya IIT Academy., India.

75.

0.1 mole of compound 'S' will weigh g. (Given molar mass in g mol⁻¹C: 12, H: 1, 0: 16)

Key: 13

Sol:

JEE MAIN 2024

K C BASAVA REDDY APPL.No. 240310618179*

POWE ORDIN

PROUDLY ACHIEVED **22 RANKS IN TOP 1000**

SEIZES **4 RANKS** IN TOP 10 IN ALL-INDIA RANKS

SECURED 25 RANKS IN TOP 100 **ALL INDIA OPEN CATEGORY**

SCAN THE QR CODE