

PERFECT 100 PERCENTILERS JEE MAIN SESSION 1 JAN 2025

65 Students Secured **100** Percentiles[•]

Subject Wise 100 Percentiles in JEE MAIN 2025

S SAI RISHANTH	A MUUDAS MAHAL	PIVUSH PANDA	N HEMANTH ABHIRAM	MANMOHITH REDDY	V ESWAR KARTHIK	D NUTHAN REDDY	K SRI RAGHAVA	P LAKSHMI LASYA
App.No. 250310565519	App.No. 250310754155	App.No. 250310029401	App.No. 250310499764	App.No. 250310154511	App.No. 250310236425	App.No. 250310237342	App.No. 250310240010	App.No. 250310630103
ARNAV NIGAM	SHREYAS S	BUDUMU MAHANTH	R SAI KIRAN	G ROHIT PAWAN	MARJUN GOWDA	LOUKYA N	ABIRAAMI K	S HEMA HAVIL
App.No. 250310026446	App.No. 250310485787	App.No. 250310672360	App.No. 250310351402	App.No. 250310777503	App.No. 250310492158	App.No. 250310235400	App.No. 250310337578	App.No. 250310467818
KUSHAL N App.No. 250310413022	ALLABHYA PAREEK App.No. 250310277087	Карр. No. 250310969414	MADDU ROHIT App.No. 250310415670	K HAMSHINI App.No. 250310191070	MLAKSHMANA SEPUR App.No. 250310282416	App.No. 250310242521	KANNEBOYENA SATVIK App.No. 250310480858	VANNALE ADEEP App. No. 250310669118

PIYUSH SARKAR

y

B ROHITH DATTA

M R V GANESH ROYAL

M VISHAL KUMAR

N V VISHAL REDDY

& Many More...

S HARICHARAN

Congratulations to Students, Parents & Staff

#TransformingYourDreamsIntoReality

in One or More Subjects

处 040 66 06 06 06

🕚 srichaitanya.net

ue x is given by					
$P(X = x) = k(x+1)3^{-x}, x = 0, 1, 2, 3, \dots$ where k is a constant, then $P(X \ge 3)$ is					
$\frac{-4}{2} = \frac{z-2}{3}$ along the					

2,3,6 Let $f: R \to R$ be a function defined by f(x) = ||x+2|-2|x||. If *m* is the number 04. of points of focal minima and n is the number of points of local maxima of fthen m + n is 2) 4 3) 2 4) 3 1) 5 **Key:** 4 **Sol:** f(x) = ||x+2|-2|x|| $f(x) = \begin{cases} \left| -(x+2) + 2x \right| & x < -2 \\ \left| +(x+2) + 2x \right| & -2 \le x < 0 \\ \left| x + 2 - 2x \right| & x \ge 0 \end{cases}$ $|x + 2 - 2x_1|$ $= \begin{cases} |x + 2| & x < -2 \\ |3x - 2| & -2 \le x < 0 \\ |2 - x| & x \ge 0 \end{cases}$ $= \begin{cases} -(x + 2) & x < -2 \\ -3x - 2 & -2 \le x < 0 \\ 2 - x & 0 \le x < 2 \\ x - 2 & x \ge 2 \end{cases}$ Local minimum occur at $x = -\frac{2}{3}$ & x = 2 m = 2Local maximum occur at x = 0n=1m + n = 3The area of the region $\{(x, y): |x - y| \le y \le 4\sqrt{x}\}$ is 05. 1) $\frac{1024}{3}$ 2) $\frac{512}{3}$ 3) 512 4) $\frac{2048}{2}$ **Key:** 1 **Sol:** $|x - y| \le y \le 4\sqrt{x}$ Consider |x - y| = y & $y = 4\sqrt{x}$ $x - v = \pm v$ $y = \frac{x}{2}$ or x = 0Solve $y = 4\sqrt{x}$ & $y = \frac{x}{2}$ We get x = 0 or x = 64Point of intersection (0,0) & (64,32)

Jee-Main-2025_Jan Session

<u> Sri Chaitanya IIT Academy., India</u>

 $p \downarrow^{(7,10,11)}$

<u> Sri Chaitanya IIT Academy., India</u> $P A = \int_0^{64} \left(4\sqrt{x} - \frac{x}{2} \right) dx$ $=4\frac{2}{3}\left(x^{3/2}\right)_{0}^{64}-\left(\frac{x^{2}}{4}\right)_{0}^{64}$ $=\frac{8}{3}(512)-1024$ $=\frac{1024}{2}$ Let the equation x(x+2)(12-k) = 2 have equal roots. Then the distance of the 06. point $\left(k, \frac{k}{2}\right)$ from the line 3x + 4y + 5 = 0 is **3)** $5\sqrt{3}$ **4)** 15√5 1) 12 2) 15 **Key:** 2 **Sol:** x(x+2)(12-k) = 2 $\Rightarrow (12-k)x^2 + 2(12-k)x - 2 = 0$ Equal roots $\Rightarrow b^2 - 400c = 0$ $\Rightarrow 4(12-k)^2 - 4(12-k)(-2) = 0$ $\Rightarrow k^2 - 26k + 168 = 0$ \Rightarrow k=14 (or)k=12 not possible p(14,7)3x + 4y + 5 = 0 $d = \frac{|3(14) + 4(7) + 5|}{\sqrt{2^2 + 4^2}}$ $=\frac{75}{5}=5$ The sum $1 + \frac{1+3}{2!} + \frac{1+3+5}{3!} + \frac{1+3+5+7}{4!} + \dots$ upto ∞ terms, is equal to 07. 2) 6e **3)** 4*e* 4) 3e **1)** 2*e* **Key:** 1 **Sol:** $1 + \frac{1+3}{2!} + \frac{1+3+5}{3!} + \dots \infty$ $=\sum_{n=1}^{\infty}\frac{n^2}{n!}$ $=\sum_{n=1}^{\infty}\frac{n}{(n-1)!}$

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's $=\sum_{i=1}^{\infty}\frac{(n-1)+1}{(n-1)!}$ $=\sum_{n=2}^{\infty} \frac{1}{(n-2)!} + \sum_{n=1}^{\infty} \frac{1}{(n-1)!}$ = e + e = 2eIf the domain of the function $f(x) = \log_7(1 - \log_4(x^2 - 9x + 18))$ is $(\alpha, \beta) \cup (\gamma, \delta)$, 08. then $\alpha + \beta + \gamma + \delta$ is equal to 3) 15 4) 18 2) 16 **1)** 17 Key: 4 **Sol:** $f(x) = \log_7 \left[1 - \log_4 \left(x^2 - 9x + 18 \right) \right]$ $1 - \log_4(x^2 - 9x + 18) > 0$ $1 > \log_4(x^2 - 9x + 18)$ $4' > x^2 - 9x + 18$ $\Rightarrow x^2 - 9x + 14 < 0$ \Rightarrow (x-2)(x-7) < 0 $\Rightarrow 2 < x < 7$ (1) $x^2 - 9x + 18 > 0$ \Rightarrow (x-3)(x-6) > 0x < 3(or)x > 6 \Rightarrow (2)From (1) and (2) $x \in (2,3) \cup (6,7)$ $\Rightarrow \alpha + \beta + \gamma + \delta = 2 + 3 + 6 + 7 = 18$ 09. If $z_1, z_2, z_3 \in \mathbb{C}$ are the vertices of an equilateral triangle, whose centroid is z_0 , then $\sum_{k=1}^{3} (z_k - z_0)^2$ is equal to **3)** -i1) 1 **2)** *i* 4) 0 Key: 4 Sol: $A(z_1)$ 20120 $\begin{pmatrix} C \\ (Z_3) \end{pmatrix}$ By rotation mechanism

<u> Sri Chaitanya IIT Academy., India</u> $\frac{z_1 - z_0}{|z_1 - z_0|} = \frac{z_3 - z_0}{|z_2 - z_0|} e^{i\left(\frac{2\pi}{3}\right)}$ Similarly $\frac{z_2 - z_0}{|z_2 - z_0|} = \frac{z_1 - z_0}{|z_1 - z_0|} e^{i\left(\frac{2\pi}{3}\right)} \text{ and } \frac{z_3 - z_0}{|z_2 - z_0|} = \frac{z_2 - z_0}{|z_2 - z_0|} e^{i\left(\frac{2\pi}{3}\right)}$ $\Rightarrow (z_1 - z_0)^2 + (z_2 - z_0)^2 + (z_3 - z_0)^2 = 0$ Line L_1 of slope 2 and line L_2 of slope $\frac{1}{2}$ intersect at the origin O. In the first 10. quadrant, P_1, P_2, \dots, P_{12} are 12 points on line L_1 and Q_1, Q_2, \dots, Q_9 are 9 points on line L_2 . Then the total number of triangles, that can be formed having vertices at three of the 22 points $O, P_1, P_2, \dots, P_{12}, Q_1, Q_2, \dots, Q_9$ is: **3)** 1026 **2)** 1188 **4)** 1134 **1)** 1080 **Key:** 4 **Sol:** ${}^{22}C_3 - {}^{10}C_3 - {}^{13}C_3$ =1134 (or) ${}^{9}C_{1} \times {}^{13}C_{2} + {}^{12}C_{1} \times {}^{9}C_{2}$ The shortest distance between the curves $y^2 = 8x$ and $x^2 + y^2 + 12y + 35 = 0$ is: 11. **3)** $2\sqrt{3}-1$ **4)** $2\sqrt{2}-1$ **2)** $3\sqrt{2}-1$ **1**) $\sqrt{2}$ **Kev:** 4 **Sol:** Let $P(at^2, 2at) = (2t^2, 4t)$ Slope of tangent of $y^2 = 8x$ $2y\frac{dy}{dx} = 84$ $\frac{dy}{dx} = \frac{4}{x}$ Slope of normal $=\frac{-y}{4}$ at $p(2t^2, 4t)$ Is $=\frac{-4t}{4} = -t$ Centre of circle (0,-6) slope of $CP = \frac{4t+6}{2t^2-6}$ $\therefore \qquad \frac{4t+6}{2t^2} = -t$ $2t^3 + 4t + 6 = 0$ $t = -1 \Longrightarrow -2 - 4 + 6 = 0$ $(t+1)(2t^2 - 2t + 6) = 0$ \therefore P(2,-4), C = (0,-6) then PC = $\sqrt{(-6+4)^2+4} = \sqrt{4+4} = \sqrt{8}$ $S.D = \sqrt{8} - \text{radius} = 2\sqrt{2} - 1$

Sol: Given $3\lambda x + x + 7\lambda y + 2y - 17\lambda - 5 = 0$ $(x+2y-5) + \lambda(3x+7y-17) = 0$ This is in the from of $L_1 + \lambda L_2 = 0$ $L_1 = x + 2y - 5 = 0$ (1)

12.

13.

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's (2) $L_2 = 3x + 7y - 17 = 0$ **Distance between** (3,6)to x+2y-5=0 is d $d = \left| \frac{3+12-5}{\sqrt{1+4}} \right| = \frac{10}{\sqrt{5}}$ $d^2 = 20$ If the four distinct points (4,6),(-1,5),(0,0) and (k,3k) lie on a circle of radius 14. r, then $10k + r^2$ is equal to: 1) 33 2) 35 **3)** 34 4) 32 **Key:** 2 **Sol:** equation of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ Passing through the origin then c = 0equation of the circle passing through the point (4,6) then 2g+3f+13=0 (i) equation of the circle passing through the point (-1,5)then -g + 5f + 13 = 0..... (ii) solving (i) and (ii) then we get the circle $x^2 + y^2 - 4x - 6y = 0$ (k,3k) then lies on the circle $\therefore \quad k = \frac{11}{5}$ Radius of the circle $\sqrt{13}$ $\therefore 10k + r^2 = 35$ Each of the angles β and γ that a given line makes with the positive γ – and 15. z – axes, respectively, is half of the angle that this line makes with the positive x-axes. Then the sum of all possible values of the angle β is 2) $\frac{3\pi}{4}$ **4)** $\frac{3\pi}{2}$ 1) $\frac{\pi}{2}$ **3)** π **Kev:** 2 **Sol:** Given that $\beta = \frac{\alpha}{2}, \gamma = \frac{\alpha}{2}$ $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \alpha + 2\cos^2 \frac{\alpha}{2} - 1 = 0$ $\Rightarrow \cos^2 \alpha + \cos \alpha = 0$ $\Rightarrow \cos \alpha (\cos \alpha + 1) = 0$ $\Rightarrow \cos \alpha = 0, \ \cos \alpha = -1$ $\alpha = \frac{\pi}{2}$ $\alpha = \pi$

<u> Sri Chaitanya IIT Academy., I</u>ndia. 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's $\beta = \frac{\pi}{4}, \frac{\pi}{2}$ (possibilities) Sum $=\frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}$ Let f be a function such that $f(x) + 3f\left(\frac{24}{x}\right) = 4x, x \neq 0$. Then f(3) + f(8) is 16. equal to **1)** 11 2) 12 **3)** 13 4) 10 кеу: 2 (24)24

x

Sol: Let f be a function such that

Let the Mean and Variance of five observations $x_1 = 1, x_2 = 3, x_3 = a, x_4 = 7$ and 17. $x_5 = b, a > b$, be 5 and 10 respectively. Then the Variance of the observation $n + x_n, n = 1, 2, \dots, 5$ is 1) 16 **3)** 17 4) 16.4 2) 17.4 **Kev:** 1 Sol: Let the mean and variance of five observations $x_1 = 1, x_2 = 3, x_3 = a, x_4 = 7, x_5 = b, a > b$ be

<u> Sri Chaitan</u>ya IIT Academy., India.

03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's

5or 10 respectively then the variance of the observations $n + x_n$, $n = 1, 2, \dots, 5$ Mean $x^- = \frac{\Sigma x_i}{5} = 5 \implies \Sigma x_i = 25$ Value $\sigma^2 = \frac{\Sigma x_i^2}{5} - (5)^2 = 10$ $\frac{\Sigma x_i^2}{5} = 35 \Longrightarrow \Sigma x_i^2 = 175$ $x_1 + x_2 + x_3 + x_4 + x_5 = 25$ 1 + 3 + a + 7 + b = 25 a + b = 14 $x_1^2 + x_2^2 + x_2^2 + x_4^2 + x_5^2 = 175$ $1^2 + 3^2 + a^2 + 7^2 + \frac{b^2}{2} = 175$ $a^{2} + b^{2} + 59 = 17 \implies a^{2} + b^{2} = 175 - 59 = 116$ $(a+b)^2 = a^2 + b^2 + 2ab$ 196 - 116 = 2ab $(14)^2 = 116 + 2ab$ $80 = 2ab \Longrightarrow ab = 40$ $a + \frac{40}{a} = 14 \implies a^2 + 40 = 14a$ $a^2 - 14a + 40 = 0$ a = 10, a = 4 (a - 10)(a - 4) = 0b = 14 - a = 14 - 10 = 4 $n + x_n = 1 + x_1, 2 + x_2, 3 + x_3 + 4 + x_4, 5 + x_5$ 2.5.3 + a.11.5 + b2, 5, 13, 11, 9 Variance $\sigma^2 = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2$ Mean = $\frac{2+5+13+11+7}{5} = \frac{40}{5} = 8$ $\frac{2^2 + 5^5 + 13^2 + 11^2 + 9^2}{5} = \frac{4 + 25 + 169 + 12 + 81}{5} = 80$ Variance = 80 - 64 = 16Let y = y(x) be the solution of the differential equation 18. $\frac{dy}{dx} + 3\left(\tan^2 x\right)y + 3y = \sec^2 x, y(0) = \frac{1}{3} + e^3.$ Then $y\left(\frac{\pi}{4}\right)$ is equal to 2) $\frac{4}{3} + e^3$ 3) $\frac{4}{3}$ 4) $\frac{2}{3} + e^3$ 1) $\frac{2}{2}$ **Key:** 3 **Sol:** $\frac{dy}{dx} + (3\tan^2 x)y + 3y = \sec^2 x$ $\frac{dy}{dx} + y(3\tan^2 x + 3) = \sec^2$

<u> Sri Chaitanya IIT Academy., India.</u>

$$\frac{dy}{dx} + y3\sec^2 x = \sec^2 x$$

$$I.F = e^{\int p(x)dx} = e^{3\int \sec^2 x \, dx} = e^{3\tan x}$$

$$G.S \qquad y.I.F = \int \sec^2 x. I.F \, dx$$

$$y.e^{3\tan x} = \int \sec^2 xe^{\tan x} dx$$

$$\tan x, t \Rightarrow \sec^2 + dx, dt$$

$$\int e^{3t} dt = \frac{e^{3t}}{3} + c$$

$$e^{3\tan y} = \frac{e^{3\tan x}}{3} + c$$

$$x = 0, y = \frac{1}{3} + C$$

$$\frac{1}{3} + e^3 = \frac{1}{3} + c \Rightarrow c = e^3$$

$$ye^{3\tan x} = \frac{e^{3\tan x}}{3} + e^3$$

$$x = \frac{\pi}{4}$$

$$y = e^3 = \frac{e^3}{3} + e^3$$

$$y = \frac{4}{3}$$

19. Let A = {-2,-1,0,1,2,3}. Let R be a relation on A defined by xRy if and only if y = max {x,1}. Let l be the number of elements in R. Let m and n be the minimum number of elements required to be added in R to make if reflexive and symmetric relations, respectively. Then l+m+n is equal to

1) 11
2) 13
3) 14

Key: 4
Sol: Find the elements of relation e x = -2, y = (-2,1) = 1, so (-2,1) ∈ R

$$x = -1 \quad (-1,1) \in R$$

$$x = 0 \quad (0,1) \in R$$

$$x = 1 \quad (1,1) \in R$$

$$x = 2 \quad (2,2) \in R$$

$$x = 3 \quad (3,3) \in R$$

$$R = \{(-2,1)(-1,1)(0,1)(1,1)(2,2)(3,3)\}, L = 6$$

$$A = \{-2,-1,0,1,2,3\}$$

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's Already ((1,1),(2,2),(3,3))We added (-2, -2), (-1, -1) & (0, 0), m = 3*R* be a symmetric $(a,b) \in R$ $R = \{(-2,1)(-1,1), (0,1), (1,1), (2,2)(3,3)\}$ We added (1,-2),(1,-1),(1,0), n=3n = 3 $\ell = 6, m = 3, n = 3$ $\ell + m + n = 12$ The integral $\int_{-\frac{\pi}{4} \cos^2 x + \sin^2 x}^{\frac{\pi}{4} \cos^2 x + \sin^2 x}$ is equal to 20. **2)** $\frac{3\pi^2}{2}$ **3)** $2\pi^2$ **1)** π^2 **4)** $4\pi^2$ **Key: 3 Sol:** $\int_{0}^{\pi} \frac{8x}{4\cos^2 x + \sin^2 x} dx$ $I = \int_{0}^{\pi} \frac{8(\pi - x)}{4(\cos(\pi - x))^{2} + (\sin(\pi - x))^{2}} dx$ $= \int_{0}^{\pi} \frac{8\pi}{4\cos^{2}x + \sin^{2}x} dx - \int_{0}^{\pi} \frac{8\pi}{4\cos^{2}x + \sin^{2}x} dx = I$ $2I = 8\pi \int_{-\infty}^{\pi} \frac{1}{4\cos^2 x + \sin^2 x} dx$ $I = 8\pi \int_{-\infty}^{\pi/2} \frac{\sec^2 x}{4 + \tan^2 x} dx$ $=8\pi\int_{-\infty}^{\infty}\frac{1}{4+t^2}dt$ $8\pi \frac{1}{2} \left(\tan\left(\frac{t}{2}\right) \right)^{\infty}$ $4\pi \frac{\pi}{2} = 2\pi^2$ SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.. If the equation of the hyperbola with foci (4,2) and (8,2) is $3x^2 - y^2 - \alpha x + \overline{\beta y + \gamma = 0}$, 21. then $\alpha + \beta + \gamma$ is equal to

👧 Sr<u>i Chaitanya IIT Academy., India.</u>

Kev: **Sol:** *e* is not given problem is wrong If $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p$, then $96 \log_e p$ is equal to 22. **Key: 32 Sol:** $e^{\lim_{x\to 0}\frac{1}{x^2}\frac{(\tan x-x)}{x}}$ $\lim_{e^{x\to 0}} \frac{Tanx-x}{x^3}$ $\lim_{x \to 0} \frac{x + \frac{x^3}{3} + \frac{x^5}{25} + \dots + x}{x^3}$ $\lim_{e^{x\to 0}} \frac{x^3\left(\frac{1}{3} + \frac{x^2}{25}\right)}{x^3} = e^{\frac{1}{3}} = p$ $96\log e^{1/3} = 96.\frac{1}{2} = 32$ Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k}$, $\vec{c} = 2\hat{i} - \hat{j} + 2\hat{k}$ and \vec{d} be a vector such that 23. $\vec{b} \times \vec{d} = \vec{c} \times \vec{d}$ and $\vec{a} \cdot \vec{d} = 4$. Then $\left| \left(\vec{a} \times \vec{d} \right) \right|^2$ is equal to_ Key: 128 **Sol:** $b \times d = c \times d$ $(b \times d) - (c \times d) = 0$ $(b-c) \times d = 0$ $d = + \left(\overline{b} - \overline{c}\right)$ $\overline{d} = t\left(\hat{i} - 2\hat{j} + \hat{k}\right)$ $\overline{a}.\overline{d}=4$ t(1-4+1) = 4-2t = 4t = -2 $\overline{d} = -2\left(\hat{i} - 2\hat{j} + \hat{k}\right)$ $\left| \vec{a} \times \vec{d} \right|^2 = (a.d)^2 + \left| a \right|^2 \left| d \right|^2$ $= 4^{2} + (1 + 4 + 1)4(4 + 1 + 1)$ 16 - 144 = 128Let $(1+x+x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$. If 24. $(a_1 + a_3 + a_5 + \dots + a_{19}) - 11a_2 = 121k$, then k is equal to

👧 Sri Chaitanya IIT Academy., India.

03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{5 \times 10^{14}} = 6 \times 10^{-7} \, m = 6000 \, A^0$$
$$\lambda' = \frac{\lambda}{\mu} = \frac{600 \, nm}{2} = 300 \, nm$$

27. A particle moves along the x-axis and has its displacement x varying with time t according to the equation:

$$x = c_0 \left(t^2 - 2 \right) + c \left(t - 2 \right)^2$$

Where c_0 and c are constants of appropriate dimensions.

Then, which of the following statements is correct?

1) the initial velocity of the particle is 4c

2) the acceleration of the particle is $2(c+c_0)$

3) the acceleration of the particle is 2c

4) the acceleration of the particle is $2c_0$

Key: 2

Sol:
$$V = \frac{dx}{dt} = c_0 (2t) + c_2 (t-2)$$

 $V = 2c_0 t + 2c (t-2)$
 $V_{t=0} = -4c$
 $\frac{dv}{dt} = a = 2c_0 + 2c$
 $= 2(c_0 + c)$

28. Given below are two statements one is labeled as Assertion A and the other is labeled as Reason R

Assertion A: The Bohr model is applicable to hydrogen and hydrogen-like atoms only:

Reason R: The formulation of Bohr model does not include repulsive force between electrons. In the light of the above statements, choose the correct answer from the options given below:

- 1) Both A and R are true but R is NOT the correct explanation of A
- 2) Both A and R are true and R is the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

Key: 2

- **Sol:** The Bohr's model only consider the electrostatic force between the nucleus and a single electron.
- **29.** The truth table corresponding to the circle given below is:

🧟 Sri 🛛	Chaitanya	a IIT Acad	emy., India.	03-Apr-2025	Jee-Main	Shift-2	Q.Paper	, Key & Sol's
	1)							
	A	B	С					
	0	0	0					
	0	1	0					
	1	0	1					
	1	1	1					
	-	-	-					
	2)							
	 A	В	С					
	0	0	1					
	0	1	0					
	1	0	0					
	1	1	0					
	3)	1	U					
	$\mathbf{\Lambda}$	R	C					
	A	0						
	1	0	0					
	1	1	0					
	U 1	1	0					
		1	1					
	4)	D	0					
	A	B						
	0	0	1					
	1	0	0					
	0	1	0					
	1	1	0					
Key	:1							
Sol:	input							
	Α	B	A+B					
	0	0	0					
	0	1	1					
	1	0	1					
	1	1	1					
	output							
	C = A.((A+B)						
	0							
	0							
	1							
	1							
Jee-M	ain-2023	5_Jan Se	ession					16 Page

👧 Sri Chaitanya IIT Academy., India.

03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's

16 🔐	I Glalanya III Acaueniy, Inula. 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's				
30.	An electric bulb rated as 100 W-220 V is connected to an ac source of rms				
	voltage 220 V. The peak value of current through the bulb is:				
	1) 2.2A 2) 0.32 A 3) 0.45 A 4) 0.64 A				
Key	y: 3				
Sol	P = 100w				
	$V = 220v R = \frac{V^2}{P} = \frac{220 \times 220}{100} = 484\Omega$				
	$E_0 = \sqrt{2}E_{rms} = 1.414 \times 220 = 311v$				
	P = 100 = 0.454				
	$l = \frac{1}{E_{max}} = \frac{1}{220} = 0.45A$				
31	A block of mass 1 kg moving along x with speed $y = 10m/s$ enters a rough region				
51.	ranging from $x = 0.1m$ to $x = 1.0m$. The retarding force acting on the block in this range is				
	F = -kxN with $k = 10N/m$. Then the final speed of the block as it crosses, rough region				
	$T_r = -k k v$, with $k = 101 v + m$. Then the final speed of the block as it closses fough region				
	1) 4 m/s 2) 10 m/s 3) 6 m/s 4) 8 m/s				
Key	J = M S $Z = J = 0 = M S$ $S = 0 = M S$ $J = 0 = M S$				
INC					
Sol	$KE = \frac{1}{2}mv^2$				
	r_{2} $r_{2} = 1.9$ $r_{2} = 1.9$				
	$\omega = \int_{x_1}^{x_2} F d_x = \int_{x_{1=0.1}}^{x_2-10} \tan dx = -10 \left[\frac{n^2}{2} \right]_{0.1} = -\frac{k}{2} \left[\left(1.9 \right)^2 - \left(0.1 \right)^2 \right]$				
	$w = \frac{10}{1361} \begin{bmatrix} 361 & 0.01 \end{bmatrix} = 5 + 36 = 180^3$				
	$\omega = \frac{-5}{5} [5.01 - 0.01] = 5 + 3.0 = 18.0 - \frac{5}{5}$				
	$\omega = 1 KE$				
	$-18 = \frac{1}{2}m\left(v_2^2 - v_1^2\right)$				
	$-36 = 1(v_2^2 - 100)$				
	(2)				
	$v_2 = 64$ $v_2 = 8$ m/s				
32.	A motor operating on 100V draws a current of IA. If the efficiency of the				
	motor is 91.6%, then the loss of power in units of cal/s is				
	1) 4 2) 8.4 3) 6.2 4) 2				
Key	y: 2				
Sol	$P_{in} = VI = 100 \times 1 = 1000$				
	$P_{out} = 4P_{in} = 91.6$				
	1000 = 100 - 916				
	= 8.4 m				
33.	Which of one of the two slits in a Young's double slit interference experiment is half of the other slit. The ratio of the maximum to the minimum intensity in the interference pattern is:				

🧟 Sri Chaitanya IIT Academy., India.			03-Apr-2025_J	<u>ee-Main Shift-2 Q.Paper, Key & Sol's</u>	
	1) 3:1	2) 9:1	3) $(2\sqrt{2}+1):(2\sqrt{2})$	$\sqrt{2}$ -1) 4) $(3+2\sqrt{2}):(3-2\sqrt{2})$	
Key	y: 2				
Sol	: $\frac{I_{\text{max}}}{I_{\text{min}}} : \frac{\left(\frac{34}{2}\right)^2}{\left(\frac{4}{2}\right)^2} = \frac{9}{1}$				
34.	A particle is proj the maximum he	jected with veloc eight attained by	tity <i>u</i> so that its h it. The horizontal	orizontal range is three times range of the projectile is	
	given as $\frac{mu^2}{25g}$, w	here value of <i>n</i>	is: (g is accelerati	on due to gravity)	
Key	1) 12 v: 2	2) 24	3) 18	4) 6	
Sol: 35.	Key: 2 Sol: $\frac{4^{2} \sin 2\theta}{g} = \frac{34^{2} \sin^{2} \theta}{2g}$ $2 \sin \theta \cos \theta = \frac{3}{2} \sin^{2} 6$ $\frac{4}{3} = \tan \theta$ $\cos \theta = \frac{3}{5}$ $R = \frac{4^{2} \sin \theta \cos \theta}{g}$ $= 4^{2} \times \frac{2}{g} \times \frac{4}{5} \times \frac{3}{5} = \frac{244^{2}}{25g}$ 35. Two cylindrical vessels of equal cross sectional area of $2m^{2}$ contain water upto heights 10m and 6m respectively. If the vessels are connected at their better				
	(Density of wate	er is $10^3 kg / m^3$ an	$d g = 10 m / s^2)$		
	1) $4 \times 10^4 J$	2) $8 \times 10^4 J$	3) $1 \times 10^5 J$	4) $6 \times 10^4 J$	
Key	y: 2	1	2		
Sol	$\omega = \frac{1}{4} (4_1 - 4_2)^2 g$	$AP = \frac{1}{4} \times 16 \times 10 \times 2$	2×10^{3}		
36.	 = 8×10⁴ 36. Using a battery, a 100 pF capacitor is charged to 60 V and then the battery is removed. After that, a second uncharged capacitor is connected to the first capacitor in parallel. If the final voltage across the second capacitor is 20 V, is capacitance is: (in pF) 				
	1) 600	2) 200	3) 100	4) 400	
Jee-I	Main-2025_Jan Sessio	n		18 Page	

🧟 Sri Chaitanya IIT Academy., India.

Key: 2 Sol: $Q_i = C_1 V_1$ = $100 \times 10^{-12} \times 60 = 6 \times 10^{-9} C$ $Q_{1f} = C_1 V_f = 100 \times 10^{-12} \times 20$ = $2 \times 10^{-9} C$ $Q_{2f} = Q_i - Q_{1f} = 4 \times 10^{-9} C$ $C_2 = \frac{Q_{2f}}{V_f} = \frac{4 \times 10^{-9}}{20} = 200 pF$

37. In the resonance experiment, two air columns (closed at one end) of 100 cm and 120 cm long, give 15 beats per second when each one is sounding in the respective fundamental modes. The velocity of sound in the air column is:

1) 340 m/s 2) 335 m/s 3) 370 m/s 4) 360 m/s Key: 4

- Sol: $\Delta n = m_1 n_2$ $15 = \frac{v}{4\ell_1} - \frac{v}{4\ell_2}$ $15 = \frac{v}{4 \times 1} - \frac{v}{4 \times 1.2}$ $= \frac{v}{4} \left[1 - \frac{10}{12} \right]$ $15 = \frac{v}{4} \left[1 - \frac{5}{6} \right]$ $15 = \frac{v}{4} \cdot \frac{1}{6}$ $v = 15 \times 24$ $= 360 \ m/s$
- **38.** A magnetic dipole experience a torque of $80\sqrt{3}Nm$ when placed in uniform magnetic field in such a way that dipole moment makes angle of 60° with magnetic field. The potential energy of the dipole is :

1)
$$-60 \text{ J}$$
 2) $-40\sqrt{3J}$ 3) $80J$ 4) $-80J$
Key: 4
Sol: $\tau = MB \sin \theta$
 $8\sqrt{3} = MB \frac{\sqrt{3}}{2}$
 $MB = 160$
 $P\sqrt{3} = -MB \cos \theta$
 $= -160 \times \frac{1}{2}$
 $= -80J$

👧 Sri Chaitanya IIT Academy., India. 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's **39.** An ideal gas exists in a state with pressure P_0 , volume V_0 . It is isothermally expanded to 4 times of its initial volume (V_0) , then isobarically compressed to its original volume. Finally the system is heated isochorically to bring it to its initial state. The amount of heat exchanged in this process is **2)** $P_0V_0(2\ln 2 - 0.25)$ **1)** $P_0V_0(\ln 2 - 0.25)$ **3)** $P_0V_0(\ln 2 - 0.75)$ 4) $P_0V_0(2\ln 2 - 0.75)$ **Key:** 4 Sol: $P_1 = P_0$ $V_1 = V_0$ $T_1 = T_0$ $P_2 = P_2$ $V_2 = 4V_0$ $T_2 = T_0$ $\begin{array}{ll} P_3 = P_2 & V_3 = V_0 & T_3 = T_0 \\ P_4 = P_4 & V_4 = V_0 & T_4 = \end{array}$ $T_4 = T_0$ $P_0 V_0 = P_2 4 V_0$ $P_2 = \frac{P_0}{4}$ du = 0(cyclic) $dQ = d\omega$ $= d\omega_{12} + d\omega_{23} + d\omega_{31}$ $= nRT_0 \log \frac{4v_0}{v_0} + P_2 \left[\frac{v}{3} - \frac{v}{2} \right] + 0$ $= nRT_0 2\log 2 + \frac{P_0}{4} [v_0 - 4v_0]$ $= nRT_0 2\log 2 - \frac{3}{4}P_0V_0$ $=P_0V_02\log 2-\frac{3}{4}P_0V_0$ $= P_0 V_0 [2 \log 2 - 0.75]$ **40.** A solid steel ball of diameter 3.6 mm acquired terminal velocity $2.45 \times 10^{-2} m/s$ while falling under gravity through an oil of density $925kgm^{-3}$. Take density of steel as 7825 kg m^{-3} and g as 9.8 m/s^2 . The viscosity of the oil in SI unit is 1) 1.68 2) 2.38 3) 2.18 4) 1.99 Key: 4 **Sol:** $v_t = \frac{2}{9} \frac{R^2}{n} g(\rho - \pi)$

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's $2.45 \times 10^{-2} = \frac{2}{9} \times \frac{\left(1.8 \times 10^{-3}\right)^2}{\eta} [7825 - 925]10$ $\eta = \frac{2(1.8 \times 10^{-3})^2 [6900] \times 9.8}{9 \times 2.45 \times 10^{-2}}$ $=\frac{6.48\times4900\times10^{-6}\times9.8}{22.05\times10^{-2}}=\frac{44712\times9.8}{22.05\times10^{-4}}$ $=19872 \times 10^{-4}$ =1.9872=1.99 m/s41. Pressure of an ideal gas, contained in a closed vessel, is increased by 0.4%when heated by $1^{0}C$. Its initial temperature must be: **1)** $250^{\circ}C$ **2)** $25^{\circ}C$ **3)** 250 K **4)** 2500 K **Kev:** 3 **Sol:** Initial state $p_1 v = nRT_1$(1)(2) Final state $p_2 v = nRT_2$ $p_2 = p_1 + 0.004 p_1 = 1.004 p_1 \text{ and } T_2 = T_1 + 1$ $(2) = \frac{p_2 v}{p_1 v} = \frac{nRT_2}{nRT_1}$ $(1) = \frac{p_2}{p_1} = \frac{T_2}{T_1}$

42.

Consider two blocks A and B of masses $m_1 = 10 kg$ and $m_2 = 5 kg$ that are placed on a frictionless table. The block A moves with a constant speed v = 3m / stowards the block B kept at rest. A spring with spring constant k = 3000 N / m is attached with the block B as shown in the figure. After the collision, suppose that the blocks A and B, along with the spring in constant compression state,

Jee-Main-2025_Jan Session

 $\frac{1.004\,p_1}{p_1} = \frac{T_1 + 1}{T_1}$

 $1.004 = \frac{T_1 + 1}{T_1}$

 $1.004T_1 - T_1 = 1$

 $T_1 = \frac{1}{0.004} = 250K$

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's move together, then the compression in the spring is, (Neglect the mass of the spring) **2)** 0.3 m **3)** 0.2 m **1)** 0.1 m **4)** 0.4 m **Key:** 1 **Sol:** acc to L.C.M $m_1u_1 + m_2u_2 = (m_1 + m_2)v$ $10 \times 3 + 5 \times 0 = (10 + 5)v$ v = 2 m / sHere KE = elastic potential energy $\frac{1}{2}(m_1 + m_2)v^2 = \frac{1}{2}kx^2$ (m here) $v^2 = -Kx^2$ $x^2 = \frac{\left(m_1 + m_2\right)}{L}v^2$ $x = \sqrt{\frac{(m_1 + m_2)}{v}}v^2$ $\sqrt{\frac{(10+5)2^2}{3000}} = \sqrt{\frac{15\times4}{3000}} = \sqrt{\frac{60}{3000}} = \sqrt{0.02} = 0.1414m$ $x \approx 0.1m$ **43.** Match the List -I with List -IIList-I List-II ML^2T^{-1} Boltmann constant Ι А Coefficient of viscosity $MLT^{-3}K^{-1}$ Π В $\frac{ML^{2}T^{-2}K^{-1}}{ML^{-1}T^{-1}}$ Planck's constant С III D Thermal conductivity IV Choose the correct answer from the options given below: **2)** A - II; B - III; C - IV; D - I**1)** A - III; B - II; C - I; D - IV**4)** A - III; B - IV; C - I; D - II**3)** A - III; B - IV; C - II; D - IKey: 4 **Sol:** Boltzmann constant $K_B = \frac{pv}{NT} = ML^2T^{-2}K^{-1}$ Coefficient of viscosity $h = \frac{F}{A\frac{dv}{dt}} = ML^{-1}T^{-1}$ Plank's constant $h = \frac{E}{\gamma} = ML^2 T^{-1}$ Thermal conductivity $K = \frac{ad}{A(T_2 - T_1)} = MLT^{-3}K^{-1}$

🧟 Sri Chaitar	I ya IIT Academy., India. 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's				
44. Give	n below are two statements: one is labeled as Assertion A and the other is				
label	ed as Reason R				
Asse	rtion A: If oxygen ion (O^{-2}) and Hydrogen ion (H^+) enter normal to the				
magr	tetic field with equal momentum, then the path of O^{-2} ion has a smaller				
curva	ture than that of H ⁺ .				
Keas	on R: A proton with same linear momentum as an eletron will form a path				
	aner radius of curvature on entering a uniform magnetic field				
In the	light of the above statements, choose the correct answer from the options				
aiver	below				
	is true but R is false				
2) F	So the A and R are true but R is NOT the correct explanation of A				
3) F	Both A and R are true and R is the correct explanation of A				
4) A	is false but R is true				
Key: 1					
Sol: A)	$F_m = F_c$				
D	mv^2				
Bqv =	$\frac{1}{2}$				
"_ <i>P</i>					
$V = \overline{B}$	$r = \frac{Bq}{Bq}$				
q _{0⁻²} >	> q ₄ +				
$r \propto \frac{1}{r}$					
q q					
B) ch	arge of proton = charge of electron and $P; B$ are correct				
$r = \frac{H}{r}$					
B	Bq				
r is s	ame for proton and electron				
45. Two	monochromatic light beams have intensities in the ratio 1:9. An				
inter	erence pattern is obtained by these beams. The ratio of the intensities of				
1) 3	$\frac{1}{1} = \frac{1}{2} + \frac{1}$				
1) J Kev• 4	.1 2) 3.1 3) 8.1 4) 4.1				
Sol. Inter	sity $\times amplitude^2$				
$I \wedge I$ $I_{\text{max}} =$	$=\left(A_1+A_2\right)^2$				
I _{min} =	$\left(A_1 - A_2\right)^2$				
$I\alpha A^2$	$\therefore \ \frac{I_1}{I_2} = \frac{A_1^2}{A_2^2}$				
Jee-Main-20	25_Jan Session 23 Page				

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's $\frac{1}{3} = \frac{A_1}{A_2}$ $\therefore A_1 = 1, A_2 = 3$ Now $\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2}$ $=\frac{16}{4}$ $\frac{I_{\max}}{I_{\min}} = \frac{4}{1}$ SECTION-II (NUMERICAL VALUE TYPE) This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases. **46**. Two cells of emfs 1 V and 2V and internal resistances 2Ω and 1Ω , respectively, are connected in series with an external resistance of 6Ω . The total current in the circuit is I_1 . Now the same two cells in parallel configuration are connected to same external resistance. In this case, the total current drawn is I_2 . The value of $\frac{I_1}{I_2}$ is $\frac{x}{3}$. The value of x is

Sol:
$$i_1 = \frac{3}{2+1+6} = \frac{1}{3}A$$

 $i_2 = \frac{\left(\frac{5}{3}\right)}{\left(\frac{2}{3}+6\right)} = \frac{1}{4}A$
 $\therefore \quad \frac{i_1}{i_1} = \frac{4}{3}$

47. The excess pressure inside a soap bubble A in air is half the excess pressure inside another soap bubble B in air. If the volume of the bubble A is n times the volume of the bubble B, then, the value of n is _____.

Key: 8

Sol:
$$\frac{4T}{R_A} = \frac{1}{2} \left(\frac{4T}{R_B} \right)$$

 $\therefore \quad R_A = 2R_B$
 $V_A = 8V_B$

Sri Chaitanya IIT Academy, India. 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's 48. A physical quantity C is related to four other quantities p,q,r and s as follows $C = \frac{pq^2}{r^3\sqrt{s}}$. The percentage errors in the measurement of p,q,r and s are 1%, 2%, 3% and 2%, respectively. The percentage error in the measurement of C will be ______%. Key: 15 Sol: $C = \frac{pq^2}{r^3\sqrt{s}}$

% error in $C = (1)(1) + (2)(2) + (3)(3) + (\frac{1}{2})(2) = 15$

49. Light from a point source in air falls on a spherical glass surface (refractive index, $\mu = 1.5$ and radius of curvature = 50 cm). The image is formed at a distance of 200 cm from the glass surface inside the glass. The magnitude of distance of the light source from the glass surface is _____ m.

Key: 4

- Sol: $\frac{1.5}{200} \frac{1}{-x} = \frac{1.5 1}{50}$ $x = 400 \ cm$
- **50.** An electron in the hydrogen atom initially in the fourth excited state makes a transition to n^{th} energy state by emitting a photon of energy 2.86 eV. The integer value of n will be_____.

Key: 2

Sol: $\frac{13.6}{n^2} - \frac{13.6}{25} = 2.86eV$ $\therefore \qquad n = 2$

CHEMISTRY

Max Marks: 100

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

51. Consider the following statements related to temperature dependence of rate constants. Identify the correct statements.

A. The Arrhenius equation holds true only for an elementary homogenous reaction

- B. The unit of A is same as that of k in Arrhenius equation
- C. At a given temperature, a low activation energy means a fast reaction
- D. A and Ea as used in Arrhenius equation depend on temperature
- E. When Ea >> RT, A and Ea become interdependent

Choose the correct answer from the options given below:

1) A and B only 2) B, D and E only 3) A, C and D only 4) B and C only

03-Apr-2025	Jee-Main	Shift-2	Q.Paper	Key	/ &	Sol's

Key: 4 Sol: Since A and K must have the same units [as the exponential term is dimensionless]

At a given temperature a low activation energy means fast react correct

52. The standard cell potential (E_{cell}^{Θ}) of a fuel cell based on the oxidation of

methanol in air that has been used to power television relay station is measured

as 1.21 V. The standard half cell reduction potential for $O_2(E_{O_2/H_2O})$ is 1.229 V.

Choose the correct statement:

<u> Sri Chaitanya IIT Academy., India</u>

1) Oxygen is formed at the anode

2) The standard half -cell reduction potential for the reduction of

 $CO_2(E^o_{CO_2/CH_3OH})$ is 19 mV

3) Reduction of methanol takes place at the cathode

4) Reactants are fed at one go to each electrode

Key: 1

Sol: In a methanol fuel cell methanol is oxidized at anode and oxygen is reduced at cathode.

Anode $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6C^-$

Cathode
$$\frac{3}{2}O_2 + 6H^+ + 6C^- \rightarrow 3H_2O$$

$$E_{cell}^0 = E_{cathode}^0 - E_{anode}^0$$

$$1.21 = 1.229 - E_{anode}^{0}$$
$$\Rightarrow \qquad E_{anode}^{0} = 0.019V$$

This matches the value given for E_{CO_2/CH_3OH}^0 conforming

 CH_3OH oxidation occur at anode.

53. Given below are two statements:

Statement I : When a system containing ice in equilibrium with water (liquid) is heated, heat is absorbed by the system and there is no change in the temperature of the system until whose ice gets melted.

Statement II: At melting point of ice, there is absorption of heat in order to overcome intermolecular forces of attraction within the molecules of water in ice and kinetic energy of molecules is not increased at melting point.

In the light of the above statements, choose the correct answer from the options given below

- 1) Statement I is false but Statement II is true
- 2) Both Statement I and Statement II are false
- 3) Statement I is true but Statement II is false
- 4) Both Statement I and Statement II are true

Key:4

<u> Sri Chaitanya IIT Academy., India.</u>

03-Apr-2025_Jee-Main_Shift-2_Q.Paper, Key & Sol's

- **Sol:** The absorbed heat [latent heat] is used to break inter molecular bonds, not to increase K.E. (so temp remain constant)
- **54.** Given below are two statements:

Statement I: CrO_3 is a stronger oxidizing agent than MoO_3

Statement II: Cr(VI) is more stable than Mo(VI)

In the light of the above statements, choose the correct answer from the options given below

- 1) Statement I is false but Statement II is true
- 2) Both Statement I and Statement II are true
- 3) Both Statement I and Statement II are false
- 4) Statement I is true but Statement II is false

Key: 4

- **Sol:** CrO_3 is stronger oxidizing agents than MoO_3 . This is because Cr has a higher tendency to get reduced from +6 to lower oxidation state.
- 55. The sequence from the following that would result in giving predominantly 3, 4, 5- Tribromoaniline is:

<u>®</u> Sri	i Chaitanya IIT Academy., India.	03-Apr-2025_Jee-Main_Shift-2_Q.Paper, Key & Sol's			
Sol	: Vitamins $\rightarrow B$ and $C \Rightarrow$ water soluble	vitamins			
	Vitamins $\rightarrow A, D, E$ and K for soluble vitamins				
57.	The correct orders among the following are				
	Atomic radius : $B < Al < Ga < In < Tl$				
	Electronegativity: $Al < Ga < In < Tl < B$				
	Density : $Tl < In < Ga < Al < B$				
	1^{st} Ionisation Energy : $In < Al < Ga < T_{st}$	l < B			
	Choose the correct answer from the o	ptions given below:			
	1) A and C only 2) C and D only 3)	B and D only 4) A and B only			
Key	7:3				
Sol	Atomic radius $B < Ga < Al < In < T\ell$				
	Electronegativity $Al < Ga < In < Tl < B$				
	Density $B < Al < Ga < In < Il$				
50	1° I.E. $In < Al < Ga < Il < B$	20ml of 1 14 UCL solution least in a			
58.	10mL OI 2MNaOH Solution is added to	5 20mL of 1 <i>M</i> HCl solution kept in a			
	beaker. Now, 10 mL of this mixture in	s poured into a volumetric flask of 100			
	mL containing 2 moles of <i>HCl</i> and ma	ade the volume upto the mark with			
	alstified water. The solution in this ha	10 M UCl solution			
	3) 0.2 M NaCl solution	Noutral solution			
Kos	3) 0.2 WI WACI Solution 4)	Neutral solution			
501	10×2 20×1				
	-20 mmol = 20 mmol 20 mmol				
	= 20 mmot = 20 mmot = 20 mmot				
	\therefore concentration of $NaCl = \frac{20}{100} = 2 \times$	10^{-1}			
	= 0.2M				
59.	Mass of magnesium required to produ	ace 220 mL of hydrogen gas at STP on			
	reaction with excess of dil. HCl is				
	Given: molar mass of Mg is 24 g mol	-1			
	1) 236 mg 2) 2.444 g 3)	0.24 mg 4) 235.7 g			
Key	<i>i</i> : 1	<i>c</i> , <i>c</i>			
Sol	Balanced chemical equation is				
	$Mg + 2HCl \longrightarrow MgCl_2 + H_2(g)$				
	24 g 22400) mL			
	? 220 r	nL			
	24×220 0.22(
	$x = \frac{1}{22400} = 0.230g$				
	= 236 mg				
60.	Given below are two statements:				
Jee-N	Nain-2025_Jan Session	28 Page			

62. Given below are two statements:

Statement I: Wet cotton clothes made of cellulose based carbohydrate takes comparatively longer time to get dried than wet nylon polymer based clothes. **Statement II:** Intermolecular hydrogen bonding with water molecule is more in nylon-based clothes than in the case of cotton clothes.

In the light of above statements, choose the correct answer from the options given below

- 1) Statement I is false but Statement II is true
- 2) Both Statement I and Statement II are false
- 3) Both Statement I and Statement II are true
- 4) Statement I is true but Statement II is false

Key: 3

Sol: Nylon 6, 6 Polymer clothes has Inter molecular H-bond so it takes more time for dry.

$$\frac{H}{(NH - (CH_2)_6 - N - C - (CH_2)_4 - C)_4}$$

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's 63. In Dumas' method for estimation of nitrogen 0.4 g of an organic compound gave 60 mL of nitrogen collected at 300 K temperature and 715 mm Hg pressure. The percentage composition of nitrogen in the compound is (Given: Aqueous tension at 300 K = 15 mm Hg) 1) 17.46 % 2) 7.85 % 3) 20.95 % 4) 15.71 % Key: 4 **Sol:** $\frac{p_1 v_1}{T_1} = \frac{p_2 v_2}{T_2}$ $p_{dry \ gas} = p_{most \ gas} - Aqueous \ tension$ $\frac{200 \times 60}{300} = \frac{760 \times v_2}{273}$ 715 - 15 = 700 $v_2 = 50.28$ $\%N = \frac{28}{22400} \times \frac{V_{N_2}initial \ at \ S.T.r}{wt \ to \ O.C \ in \ gm} \times 100$ $\frac{28}{22400} \times \frac{50.28}{0.4} \times 100 = 15.71\%$ 64. For electrons in '2s' and '2p' orbitals, the orbital angular momentum values, respectively are: 2) $\frac{h}{2\pi}$ and $\sqrt{2}\frac{h}{2\pi}$ 1) 0 and $\sqrt{6} \frac{h}{2\pi}$ **3)** 0 and $\sqrt{2} \frac{h}{2\pi}$ 4) $\sqrt{2} \frac{h}{2\pi}$ and 0 Key: 4 Sol: $\sqrt{\ell(\ell+1)} \frac{4}{2\pi}$ $25 = \frac{oh}{2\pi} = 0$ $2p = \sqrt{1(1+1)} \frac{4}{2\pi}$ $=\frac{\sqrt{2h}}{2\times 5}$ 65. Identify the diamagnetic octahedral complex ions from below: A. $\left[Mn(CN)_6 \right]^{3-}$ B. $\left[Co(NH_3)_6 \right]^{3+}$ C. $\left[Fe(CN)_6 \right]^{4-}$ D. $\left[Co(H_2O)_3F_3 \right]$ Choose the correct answer from the options given below: 1) A and D only 2) B and D only 3) B and C only 4) A and C only **Key: 3**

Sol:

<u> Sri Chaitanya IIT Academy., India</u> 03-Apr-2025 Jee-Main Shift-2 Q.Paper, Key & Sol's **Key:** 3 **Sol:** $A \rightarrow$ Pnictogen [group 15] \rightarrow Moscoviu $[M_c]$ [IV] $B \rightarrow$ Chalcogen \rightarrow Livenmonium [Lv] – [III $C \rightarrow$ Halogen \rightarrow Tennesine [Ts] $\rightarrow I$ $D \rightarrow \text{Noble gas} \rightarrow \text{oganesson} [Og] \rightarrow II$ O_2N CO_2H ? OH**68.** What is the correct IUPAC name of 1)3-Bromo-2-Hydroxy-5-nitrobenzoic acid 2) 5-Nitro-3-bromo-2-hydroxybenzoic acid 3) 2-Hydroxy-3-bromo-5-nitrobenzoic acid 4) 3-Bromo-4-hydroxy-1-nitrobenzoic acid **Key:** 1 Sol: O_2N $CO_{2}H$ OH 69. Compounds that should not be used as primary standards in titrimetric analysis are: B. Oxalic acid C. NaOH A. $Na_2Cr_2O_7$ D. FeSO₄.6H₂O E. Sodium tetraborate Choose the most appropriate answer from the options given below: 2) D and E only 1) C, D and E only 3) B and D only 4) A, C and D only **Kev:** 4 Sol: Sodium carbonate Sodium tetraborate Potassium hydrogenphtholate Oxalic acid Ferrous ammonium sulphate Primary standards NCERT NaOH secondary standards [NCERT] $KMnO_4$ 70. 40mL of a mixture of CH_3COOH and HCl (aqueous solution) is titrated against 0.1MNaOH solution conductometrically. Which of the following statement is

Jee-Main-2025_Jan Session

correct?

1) Point 'C' indicates the complete neutralization of HCl

2) The concentration of HCl in the original mixture is 0.005 M

3) The concentration of CH_3COOH in the original mixture is 0.005M

4) CH₃COOH is neutralized first followed by neutralization of HCl

Key: 2

Sol: Being as strong and *HCl* undergoes neutralization with *NaOH* initially. Point B indicates \rightarrow neutralization of *HCl*

Point C indicate \rightarrow neutralization of AeO_{15} At point B: n_{NaOH} [used for nitration of HCl] = $0.1 \times 2 \times 10^{-3}$ $= 2 \times 10^{-4}$ $=^{n} HCl$ Equation of $HCl = 2 \times 10^{-4} \times \frac{1000}{40}$ = 0.005At point C $^{n}NaOH$ [used for titration of AeOH] = $0.1 \times 3 \times 10^{-3}$ $= 3 \times 10^{-4}$

 $=^{n} AeOH$

Conc. Of $AeOH = 3 \times 10^{-4} \times \frac{1000}{40}$ = 0.0075

SECTION-II (NUMERICAL VALUE TYPE)

This section contains **5 Numerical Value Type Questions.** The Answer should be within **0 to 9999.** If the Answer is in **Decimal** then round off to the **Nearest Integer** value (Example i.e. If answer is above **10** and less than **10.5** round off is **10** and If answer is from **10.5** and less than **11** round off is **11**. **Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.**

71. The total number of structural isomers possible for the substituted benzene derivatives with the molecular formula C_9H_{12} is_____

Key: 8

👧 Sri Chaitanya IIT Academy., India.

[Given: $R = 0.082L \ atm K^{-1} mol^{-1}$] **Key: 304 Sol:** $1 \rightarrow 2 \quad \omega_{1 \rightarrow 2} = 0$ (volume constant) $2 \rightarrow 3 \quad \omega_{2\rightarrow 3} = p \Delta v = 3 \times 1000$ = 3000 *Latm* $3 \rightarrow 4 \ \omega_{3\rightarrow 4=0} = 3000 \times 101.3J$ $= 304 \ kJ$ Work done = $\omega_{1\to 2} + \omega_{2\to 3} + \omega_{3\to 4}$ = 0 + 304 + 0. kJ $=304 \ kJ$ A sample of n-octane (1.14g) was completely burn t in excess of oxygen in a bomb 75. calorimeter, whose heat capacity is 5 kJ K^{-1} . As a result of combustion reaction, the temperature of the calorimeter is increased by 5 K. The magnitude of the heat of combustion of octane at constant volume is $kJ mol^{-1}$ (nearest integer). Key: 2504 **Sol:** $n = \frac{1.14}{114.28} = 0.0099$ $\Delta H_{combustion} = \frac{C \times \Delta T}{n} = \frac{5 \times 5}{0.0099} \approx 2504 \ kJ$