

PERFECT 100 PERCENTILERS JEE MAIN SESSION 1 JAN 2025

65 Students Secured **100** Percentiles[•]

Subject Wise 100 Percentiles in JEE MAIN 2025

S SAI RISHANTH	A MUUDAS MAHAL	PIVUSH PANDA	N HEMANTH ABHIRAM	MANMOHITH REDDY	V ESWAR KARTHIK	D NUTHAN REDDY	K SRI RAGHAVA	P LAKSHMI LASYA
App.No. 250310565519	App.No. 250310754155	App.No. 250310029401	App.No. 250310499764	App.No. 250310154511	App.No. 250310236425	App.No. 250310237342	App.No. 250310240010	App.No. 250310630103
ARNAV NIGAM	SHREYAS S	BUDUMU MAHANTH	R SAI KIRAN	G ROHIT PAWAN	MARJUN GOWDA	LOUKYA N	ABIRAAMI K	S HEMA HAVIL
App.No. 250310026446	App.No. 250310485787	App.No. 250310672360	App.No. 250310351402	App.No. 250310777503	App.No. 250310492158	App.No. 250310235400	App.No. 250310337578	App.No. 250310467818
KUSHAL N App.No. 250310413022	ALLABHYA PAREEK App.No. 250310277087	Карр. No. 250310969414	MADDU ROHIT App.No. 250310415670	K HAMSHINI App.No. 250310191070	MLAKSHMANA SEPUR App.No. 250310282416	App.No. 250310242521	KANNEBOYENA SATVIK App.No. 250310480858	VANNALE ADEEP App. No. 250310669118

PIYUSH SARKAR

y

B ROHITH DATTA

M R V GANESH ROYAL

M VISHAL KUMAR

N V VISHAL REDDY

& Many More...

S HARICHARAN

Congratulations to Students, Parents & Staff

#TransformingYourDreamsIntoReality

in One or More Subjects

处 040 66 06 06 06

🕚 srichaitanya.net

<u> Sri Chaitanya IIT Academy., India.</u>

Max Marks: 100

Sri Chaitanya IIT Academy., India.

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON Central Office – Madhapur – Hyderabad

2025_Jee-Main_03-Apr-2025_Shift-1

MATHEMATICS

(SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

01. If
$$y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$$
, $x \in \mathbb{R}$, then $\frac{d^2 y}{dx^2} + y$ is equal to
1) -1 2) 27 3) 28 4) 1
Key: 1
Sol: Using $C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$
 $y(x) = \begin{vmatrix} \sin x & \cos x - \sin x & \cos x + 1 \\ 27 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = -(\cos x + 1)$
 $\frac{dy}{dx} = \sin x. \frac{d^2 y}{dx^2} = \cos x$, Given expression $= \cos x - \cos x - 1 = -1$
02. Let A be a matrix of order 3×3 and $|A| = 5$. If $|2adj(3A adj(2A))| = 2^{\alpha}.3^{\beta}.5^{\gamma}$,
 $\alpha, \beta, \gamma \in N$; then $\alpha + \beta + \gamma$ is equal to
1) 28 2) 27 3) 26 4) 25
Key: 2
Sol: Use $|AdjB| = |B|^{n-1}$, and $|KA| = K^n |A|$
Given question $= 2^3.|3A.adj(2A)|^2 = 2^3.3^6.|A.Adj(2A)|^2 = 2^3.3^6.5^2 (|2A|^2)^2$
 $= 2^3.3^6.5^2.|2A|^4 = 2^3.3^6.5^2.2^{12}.|A|^4 = 2^{15}.3^6.5^6 \to \alpha + \beta + \gamma = 27$
03. A line passes through the origin and makes equal angle with the positive coordinate axes.
It intersects the lines $L_1: 2x + y + 6 = 0$ and $L_2: 4x + 2y - p = 0$, $p > 0$ at the points A and
B respectively. If $AB = \frac{9}{\sqrt{2}}$ and the foot of the perpendicular from the point A on the line
 L_2 is M, then $\frac{AM}{BM}$ is equal to
1) 5 2) 3 3) 2 4) 4

By Chaitanua IIT Academy. India
O3-04-25 2025 Jee-Main Shift-I Q.Paper. Key & Sol's
Sol:
$$\tan \theta = \left|\frac{-2-1}{1-2}\right| = 3 = \frac{4M}{BM}$$

04. Let $z \in C$ be such that $\frac{z^2 + 3i}{z - 2 + i} = 2 + 3i$. Then the sum of all possible values of
 z^{2} is
 $1) 19 - 2i$ 2) $-19 - 2i$ 3) $-19 + 2i$ 4) $19 + 2i$
Key: 2
Sol: $z^{2} + 3i = z(2 + 3i) + (2 + 3i)(i - 2) = z(2 + 3i) - 7 - 4i$
 $\Rightarrow z^{2} - z(2 + 3i) + 7 + 7i = 0$ has roots α, β
So $\alpha + \beta = 2 + 3i, \alpha \cdot \beta = 7(1 + i)$
So sum of all possible values of $z^{2} = \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$
 $= (2 + 3i)^{2} - 14(1 + i)$
 $= -19 - 2i$
05. Let g be a differentiable function such that $\int_{0}^{x} g(t)dt = x - \int_{0}^{x} t g(t)dt, x \ge 0$, and let
 $y = y(x)$ satisfy the differential equation $\frac{dy}{dx} - y \tan x = 2(x + 1)\sec g(x), x \in [0, \frac{\pi}{2}]$. If
 $y(0) = 0$, then $y(\frac{\pi}{3})$ is equal to
 $1) \frac{4\pi}{3}$ 2) $\frac{2\pi}{3\sqrt{3}}$ 3) $\frac{4\pi}{3\sqrt{3}}$ 4) $\frac{2\pi}{3}$
Key: 1
Sol: $\int_{0}^{x} g(t)dt = x - \int_{0}^{x} t g(x)dt$, differentiate both sides $\Rightarrow g(x) = \frac{1}{1 + x} \frac{dy}{dx} - y \tan x = 2\sec x$,
I.F = cosx, solutions is $y \cos x = 2x + c$
 $y(0) = 0 \Rightarrow C = 0 \Rightarrow y = 2x \sec x \Rightarrow y(\frac{\pi}{3}) = \frac{4\pi}{3}$
06. The radius of the smallest circle which touches the parabolas $y = x^{2} + 2$ and $x = y^{2} + 2$ is

<u> Sri (</u>	Chaitanya IIT Academy., India.	03-04-25_2025	Jee-Main Shift-I Q.Paper, Key & Sol's
	1) $\frac{7\sqrt{2}}{2}$ 2) $\frac{7\sqrt{2}}{16}$	3) $\frac{7\sqrt{2}}{8}$	4) $\frac{7\sqrt{2}}{4}$
Key:	3		
Sol:	$x^{2} = y - 2 \& y^{2} = x - 2$ are S Let $P\left(2 + \frac{t^{2}}{2} + \frac{t}{2}\right)$ be any point	Symmetrical and about the nt on $v^2 - r - 2$	line $y = x$
	Let $\left(\begin{array}{c}2 \\ 4 \\ 2\end{array}\right)$ be any point	$x = x^2 - x^2$	
	So tangent at P, is parallel to	the line $y = x$	
	$\Rightarrow \frac{1}{t} = 1 \Rightarrow t = 1, P\left(\frac{9}{4}, \frac{1}{2}\right)$		
	So, $r =$ perpendicular distance	the from P to the line $x - y =$	$= 0 = \frac{\left \frac{9}{4} - \frac{1}{2}\right }{\sqrt{1^2 + (-1)^2}} = \frac{7}{4\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{7\sqrt{2}}{8}$
07.	A line passing through the po	bint $P(\sqrt{5},\sqrt{5})$ intersects t	the ellipse $\frac{x^2}{36} + \frac{y^2}{25} = 1$ at A and
	<i>B</i> such that $(PA) \cdot (PB)$ is m	aximum. Then $5(PA^2 + P)$	B^2) is equal to
	1)218 2) 377	3) 290	4) 338
Key:	4		
Sol:	Let A, B= $(\sqrt{5} + r\cos\theta, \sqrt{5} + $	$r\sin\theta$ lines on the ellipse	$e \frac{x^2}{36} + \frac{y^2}{25} = 1$
	$\Rightarrow r^2 \left(\frac{\cos^2 \theta}{36} + \frac{\sin^2 \theta}{25} \right) + r \left(\frac{\cos^2 \theta}{25} + \frac{\sin^2 \theta}{25} \right)$	$\frac{2\sqrt{5}\cos\theta}{36} + \frac{2\sqrt{5}\sin\theta}{25} + \left(\frac{2}{5}\right) + \left(\frac{1}{5}\right) + \left(\frac{1}{5$	$\left(\frac{5}{36} + \frac{5}{25} - 1\right) = 0$ is a quadratic
	equation in 'r'. So 'r' has tw	vo values , $r_1 = PA$, $r_2 = PB$	
	So that $r_1 \cdot r_2$ is maximum		
	$\Rightarrow r_1 \cdot r_2 = \frac{(-595)}{25\cos^2\theta + 36\sin^2\theta}$	$-$ is maximum θ	
	$\Rightarrow 25\cos^2\theta + 36\sin^2\theta$ is mi	nimum	
	$\Rightarrow 25 + 11 \sin^2 \theta$ is minimum	for $\theta = 0^0$	
	Consider $PA^2 + PB^2 = r_1^2 + r_1^2$	$r_2^2 = (r_1 + r_2)^2 - 2r_1r_2$ for	$\theta = 0$
	So $5(PA^2 + PB^2) = 338$		
08.	Let a_1, a_2, a_3 be a G.P. o	f increasing positive numb	pers. If $a_3 a_5 = 729$ and
	$a_2 + a_4 = \frac{111}{4}$ then $24(a_1 + a_2)$	$a_2 + a_3$) is equal to	
	1) 128 2) 129	3) 130	4) 131
Key:	2 2 2 5	3	
Sol:	$ar^2 ar^3 = 729 \Longrightarrow a^2 r^0 = 729$	$\Rightarrow ar^3 = 27 \Rightarrow a_4 = 27$	
	·		•

<u>®</u> Sri (i Chaitanya IIT Academy., India. 03-(04-25_2025_Jee-Main_Shift-I_Q.Paper, Key & Sol's
	$a_2 = \frac{111}{4} - 27 = \frac{3}{4} \Longrightarrow a = \frac{1}{8}, r = 6, a_1 + a_2 + a_3$	$_{3} = \frac{43}{8} \Longrightarrow 24(a_{1} + a_{2} + a_{3}) = 129$
09.	Line L_1 passes through the point $(1,2,3)$ and	l is parallel to z-axis. Line L_2 passes through
	the point $(\lambda, 5, 6)$ and is parallel to y-axis. Let	et for $\lambda = \lambda_1, \lambda_2, \lambda_2 < \lambda_1$, the shortest
	distance between the two lines be 3. Then th	e
	square of the distance of the point $(\lambda_1, \lambda_2, 7)$	from the line L_1 is
Key:	1) 40 2) 37 3) 32 : 4	4) 25
Sol:	$L_1: \frac{x-1}{0} = \frac{y-2}{0} = \frac{z-3}{1}, L_2: \frac{x-\lambda}{0} = \frac{y-5}{1} =$	$\frac{z-6}{0}$
	Shortest distance = $\frac{\left[\overline{a} - \overline{c} \overline{b} \overline{d}\right]}{\left \overline{b} \times \overline{d}\right } = \frac{\begin{vmatrix} \lambda - 1 & z \\ 0 & 0 \\ 0 & \overline{c} \\ 0 & \overline{c} \\ 0 & 0 $	$\frac{3 3}{2 1} = 3$
	$\Rightarrow 1 - \lambda = 3 \Rightarrow \lambda = -2, 4$ $\Rightarrow \lambda_1 = 4, \lambda_2 = -2$ P(4, -2, 7)	0
	$\overbrace{(1,2,3)}^{\frown} \underbrace{\mathcal{Q}(1,2,t+3)}_{(2,2,1)}$	
	(0,0,1)	
	$\Rightarrow (-3,4,t-4) \perp^{r} (0,0,1)$	
	$\Rightarrow t = 4, \Rightarrow Q(1,2,7)$	
	$(PQ)^2 = 9 + 16 = 25$	
10.	Let a line passing through the point $(4,1,0)$ is	then the line $L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ at
	the point $A(\alpha, \beta, \gamma)$ and the line $L_2: x-6 =$	y = -z + 4 at
	the point $B(a,b,c)$. Then $\alpha \beta \gamma$ is equal $a b c$	to
	1) 6 2) 16 3) 12	4) 8
Key: Sol:	:4	

By Characteria III Reademy. India
03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

$$A(1+2t,2+3t,3+4t) = (\alpha,\beta,\gamma)$$

$$A, R, B are collinear $\Rightarrow \overline{AR} \text{ parallel }\overline{BR}$

$$\Rightarrow \frac{2t-3}{2+\lambda} = \frac{1+3t}{2-1} = \frac{3+4t}{4-\lambda}$$
Solving we get $\lambda = -3t \Rightarrow t = -1, \lambda = 3 (or) t = \frac{-1}{3}, \lambda = 1$
Take $\lambda = 3, t = -1$

$$A(\alpha,\beta,\gamma) = (-1,-1,-1), B(\alpha,b,c) = (9,3,1)$$
So given determinant $\begin{vmatrix} 1 & 0 & 1 \\ -1 & -1 & -1 \\ 9 & 3 & 1 \end{vmatrix}$
11. Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$. Let R be a relation on A defined by xRy if and only if

$$0 \le x^2 + 2y \le 4.$$
 Let t be the number of elements in R and m be the minimum
number of elements required to be added in R to make it a reflexive relation.
Then $l + m$ is equal to

$$1/20 \qquad 2/17 \qquad 3/18 \qquad 4/19$$
Key: 3
Sol: If $x = 0 \Rightarrow y = 0, 1, 2 \Rightarrow 3$
 $x = \pm 1 \Rightarrow y = 0, 1 \Rightarrow 4$
 $x = \pm 2 \Rightarrow y = -2, -1, 0 \Rightarrow 6$
 $x = \pm 3 \Rightarrow y = -3, \Rightarrow 2$
 15
So $n(R) = 15 = l$
minimum number of elements added
to R so that R is reflexive is '3'
 $\{(-1, -1)(2, 2,)(3, 3)\} \Rightarrow m = 3 \Rightarrow l + m = 18$
12. The number of solution of the equation $2x + 3\tan x = \pi$, $x \in [-2\pi, 2\pi] - \{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}\}$ is:
1) $6 \qquad 2/3 \qquad 3/4 \qquad 4/5$
Sol: $\tan x = \frac{\pi - 2x}{3} = \frac{\pi}{3} - \frac{x}{(\frac{3}{2})}$$$

🧟 Sri	Chaitanya IIT Academy., India.	03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's
	Draw the graphs of $y = \tan x$, and $y = \frac{\pi}{3}$	$\frac{x}{3} - \frac{x}{3}$, (straight line) we get '5' points of
	intersection.	() 2)
13.	If $\sum_{r=1}^{9} \left(\frac{r+3}{2^r}\right) \cdot {}^9C_r = \alpha \left(\frac{3}{2}\right)^9 - \beta, \alpha, \beta \in$	\mathbb{N} , then $(\alpha + \beta)^2$ is equal to
TZ IZ	1) 9 2) 27 3) 81 4) 18
Key:	9	9
Sol:	Given expression = $\sum_{r=1}^{5} r.{}^{9}C_{r}.\frac{1}{2}.\frac{1}{2^{r-1}} + 3$	$3\sum_{r=1}^{5} 9C_r \cdot \frac{1}{2^r} \left(diff (1+x)^9 wrto'x' and put x = \frac{1}{2} \right)$
	$=\frac{9}{2}\left(\left(1+\frac{1}{2}\right)^{8}\right)+3\left(\left(1+\frac{1}{2}\right)^{9}-1\right)=\frac{3^{10}}{2^{9}}-1$	$+\frac{3^{10}}{2^9} - 3 = \frac{3^{10}}{2^8} - 3 = 6\left(\frac{3}{2}\right)^9 - 3 \Longrightarrow \alpha = 6, \ \beta = 3$
	So $(\alpha + \beta)^2 = 81$	
	$(1+ax)^{1/x} , x < 0$	
14.	Let $f(x) = \begin{cases} 1+b & , x=0 & be c \end{cases}$	continuous at $x = 0$. Then $e^a bc$ is equal to:
	$\frac{\left(\frac{(x+4)^{1/2}-2}{(x+c)^{1/3}-2}, x > 0\right)}{\left(x+c\right)^{1/3}-2}$	
V	1) 48 2) 64 3) 72 4) 36
Key:	1	
Sol:	$f(0) = b + 1, R.H.L = Lt \frac{(x+4)^{1/2}}{(x+c)^{1/3}}$	$\frac{-2}{-2} = \left(\frac{0}{\frac{1}{c^3 - 2}}\right) \Rightarrow c^{\frac{1}{3}} - 2 = 0 \Rightarrow c = 8$
	1	
	$\left(1+\frac{x}{t}\right)^{2}-1$ $\frac{1}{2}\cdot\frac{1}{t}$	
3	$Lt \downarrow \underbrace{\begin{pmatrix} 4 \end{pmatrix}}_{1} = \frac{2}{1} \underbrace{4}_{1} = 3 = b + 1 \Longrightarrow$	<i>b</i> = 2
	$x \to 0^{-1} \left(1 + \frac{x}{8}\right)^{\overline{3}} - 1 = \frac{1}{3} \cdot \frac{1}{8}$	
	By $LHL = Lt_{x\to 0^-} \left(e^{\frac{1}{x}(1+ax-1)} \right) = e^a = b + b^{-1}$	-14540
	so $e^a.bc = (b+1).b.c = 3.2.8 = 48$	

٦

🧟 Sri	<u>Chaitanya IIT Academy.</u>	, India.	03-04-25	2025 Jee-Main Shift-I C	Q.Paper, Key & Sol's
15.	Let α and β be	the roots of $x^2 + x^2$	$\sqrt{3}x - 16 = 0$, an	Ind γ and δ be the root	ts of
	$x^2 + 3x - 1 = 0$. If	f $P_n = \alpha^n + \beta^n$ an	$d Q_n = \gamma^n + \delta^n$, then $\frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \frac{1}{2}$	$\frac{Q_{25} - Q_{23}}{Q_{24}}$ is
Vari	equal to 1) 3	2) 7	3) 5	4) 4	
Sol:	by Newton's the $Q_{n+2} + 3Q_{n+1} - 1$ So given expression	orem $P_{n+2} + \sqrt{3}^{P}$ $Q_n = 0 \Rightarrow Put n$ ion $= \frac{16 P_{23}}{2 P_{23}} + \frac{(-1)^2}{2 P_{23}}$	$P_{n+1} - 16P_n = 0$ = 23 $\Rightarrow Q_{25} + 3$ $-3Q_{24} = 8 - 3 =$	$\Rightarrow put \ n = 23 \rightarrow P_{25} + B_{24} = Q_{23}$	$\sqrt{3}P_{24} = 16P_{23}$
16.	The sum of all ra	tional terms in the	e expansion of ($\left(2+\sqrt{3}\right)^8$ is	
Key:	1) 33845 2	2) 18817 r	3) 16923	4) 3763	
Sol:	$T_{r+1} = {}^{8} C_r . 2^{8-r} . 3$	$3^{\overline{2}}$, for rational <i>r</i>	r = 0, 2, 4, 6, 8		
	Sum $8C_0.2^8 + ^8C_0$	$C_2 \cdot 2^6 \cdot 3 + {}^8 C_4 \cdot 2^4 3^2$	$^{2} + ^{8}C_{6}.2^{2}.3^{3} + ^{8}$	$C_8.2^{0}.3^4 = 16 \times 1171 +$	-81 = 18817.
17.	If the domain of t	the function $f(x)$	$=\log_e\left(\frac{2x-3}{5+4x}\right)$	$+\sin^{-1}\left(\frac{4+3x}{2-x}\right)$ is [(α, β) , then
	$\alpha^2 + 4\beta$ is equal	to			
Key:	1) 3	2)7	3) 4	4) 5	
Sol:	$\frac{-3+2x}{5+4x} > 0 \Longrightarrow x$	$\in \left(-\infty, \frac{-5}{4}\right) \cup \left(\frac{3}{2}, \frac{1}{2}\right)$,∞) <u>1</u>], $-1 \le \frac{4+3x}{2-x} \le 1$	
	$0 \le \frac{4+3x}{2-x} + 1 \& \frac{4}{2}$	$\frac{4+3x}{2-x} - 1 \le 0$			
	$0 \le \frac{6+2x}{2-x} & \frac{2+x}{2-x} \\ x+3 & 2x+x \\ x+3 & 2x+$	$\frac{4x}{x} \le 0$			
	$\frac{x+3}{x-2} \le 0 \& \frac{2x+3}{x-2}$	$\frac{1}{2} \ge 0$			
	$x \in [-3, 2) \& x \in $	$\left(-\infty,-\frac{1}{2}\right)\cup\left(2,\infty\right)$	0)		
	So $x \in \left[-3, -\frac{1}{2}\right]$	(2) d	& <i>x</i> ≠ 2		
	From (1) & (2) x	$\in \left\lfloor -3, -\frac{3}{4} \right\rfloor$			
	So $\alpha = -3$, $\beta = -$	$-\frac{5}{4} \Rightarrow \alpha^2 + 4\beta =$	9 - 5 = 4		

🧟 Sri	Chaitanya IIT Academy., India. 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's
18.	Let $f(x) = \int x^3 \sqrt{3 - x^2} dx$. If $5f(\sqrt{2}) = -4$, then $f(1)$ is equal to
	1) $-\frac{8\sqrt{2}}{5}$ 2) $-\frac{4\sqrt{2}}{5}$ 3) $-\frac{6\sqrt{2}}{5}$ 4) $-\frac{2\sqrt{2}}{5}$
Key:	3
Sol:	Let $3 - x^2 = t \Rightarrow f(x) = \int (3 - t)\sqrt{t} \left(-\frac{1}{2}\right) dt = \frac{\frac{5}{t^2}}{5} - \frac{3}{t^2} + C = \frac{\left(3 - x^2\right)^{5/2}}{5} - \frac{\left(3 - x^2\right)^{3/2}}{1} + C$
	$5f(\sqrt{2}) = -4 \Longrightarrow C = 0, f(1) = \frac{4\sqrt{2}}{5} - 2\sqrt{2} = \frac{-6\sqrt{2}}{5}$
19.	Let the domain of the function $f(x) = \log_2 \log_4 \log_6 (3 + 4x - x^2)$ be (a,b) . If
	$\int_0^{b-a} \left[x^2 \right] dx = p - \sqrt{q} - \sqrt{r}, \ p, q, r \in \mathbb{N}, \ \gcd(p,q,r) = 1, \ \text{where } \left[\cdot \right] \text{ is the greatest integer}$ function, then $p + q + r$ is equal to
	1) 10 2) 9 3) 11 4) 8
Key:	1
Sol:	$3 + 4x - x^2 > 0 \implies x^2 - 4x - 3 < 0 \implies x \in (2 - \sqrt{7}, 2 + \sqrt{7}) (1)$
	$\log_4(\log_6(3+4x-x^2)) > 0 = \log_4 1 \implies \log_6(3+4x-x^2) > 1 = \log_6 6$
	$\Rightarrow 3+4x-x^2 > 6 \Rightarrow x^2-4x+3 < 0 \Rightarrow (x-1)(x-3) < 0 \Rightarrow x \in (1,3) =(2)$
	From (1) & (2) domain of $f(x) = (1,3) = (a,b) \Longrightarrow b - a = 2$
	So $\int_0^2 \left[x^2 \right] dx = \int_0^1 \left[x^2 \right] dx + \int_1^{\sqrt{2}} \left[x^2 \right] dx + \int_{\sqrt{2}}^{\sqrt{3}} \left[x^2 \right] dx + \int_{\sqrt{3}}^2 \left[x^2 \right] dx$
	$= 0 + 1\left(\sqrt{2} - 1\right) + 2\left(\sqrt{3} - \sqrt{2}\right) + 3\left(2 - \sqrt{3}\right) = 5 - \sqrt{2} - \sqrt{3}$
	p + q + r = 10
20.	The sum $1+3+11+25+45+71+$ upto 20 terms, is equal to
Kev	1) 8124 2) 6982 3) /130 4) /240 4
Sol:	Differences of consecutive terms are in AP
	$S = 1 + 3 + 11 + 25 + 45 + \dots + T_n$
	Let $S = 1 + 3 + 11 + 25 + \dots + T_n$
	on substrating we get $0 = 1 + (2 + 8 + 14 + 20 +) - T_n$
	:. $T_n = 1 + 2(1 + 4 + 7 + 10 +(n - 1) terms)(AP)$
	$= 1 + 2\left(\frac{n-1}{2}\right)\left(2.1 + (n-2)3\right)$
	$= 1 + (n-1)(3n-4) = 3n^2 - 7n + 5$
	$S_n = \sum T_n = 3\sum_{1}^{20} n^2 - 7\sum_{1}^{20} n + 5\sum_{1}^{20} 1 = 8610 - 1470 + 100 = 7240$
<u> </u>	

Г

🧟 Sri (haitanya IIT Academy., India. 03-04-25_2025_Jee-Main_Shift-I_Q.Paper, Key & Sol's
Sol:	Product of focal distances = $ (ex_1 + a)(ex_1 - a) = e^2 x_1^2 - a^2 = 32$
	$\Rightarrow 16e^2 - a^2 = 32 \Rightarrow 16\left(1 + \frac{b^2}{a^2}\right) = a^2 + 32 \Rightarrow 16\frac{b^2}{a^2} = a^2 + 16 - \dots - (1)$
	$P(4, 2\sqrt{3})$ Lies on H $\Rightarrow \frac{16}{a^2} - \frac{12}{b^2} = 1 (2)$
	Solving (1) & (2) we get $a^2 = 8, b^2 = 12$
	$p = 2b = 2 \cdot \sqrt{12}, \ q = \frac{2b^2}{a} = \frac{24}{2\sqrt{2}} = 6\sqrt{2}$
	$p^2 + q^2 = 48 + 72 = 120$
24.	All five letter words are made using all the letters A, B, C, D, E and arranged as in an English dictionary with serial numbers. Let the word at serial number n be denoted by W_n . Let the probability $P(W_n)$ of choosing the word W_n satisfy
	$P(W_n) = 2P(W_{n-1}), n > 1.$ If $P(CDBEA) = \frac{2^{\alpha}}{2^{\beta} - 1}, \alpha, \beta \in \mathbb{N}$, then $\alpha + \beta$ is equal to:
Key: Sol:	183 Total words formed with letters A, B, C, D, E are 120 "CDBEA" occurs at 64 th place.
	Let $P(W_1) = k, P(W_2) = 2k, P(w_3) = 2^2 k, \dots$
	So $P(W_1) + P(W_2) + \dots + P(W_{120}) = 1 \Longrightarrow k \left(1 + 2 + 2^2 + \dots + 2^{119}\right) = 1 \Longrightarrow k = \frac{1}{2^{120} - 1}$
	So $P(W_{64}) = 2^{63}K = \frac{2^{63}}{2^{120} - 1} \Longrightarrow \alpha + \beta = 63 + 120 = 183$
25.	If the number of seven-digit numbers, such that the sum of their digits is even, is
	$m \cdot n \cdot 10^n$; $m, n \in \{1, 2, 3, \dots, 9\}$, then $m + n$ is equal to
Key:	14
Sol:	Total 7 digit numbers $=9.10^{\circ}$
	Sum of these 7 digit numbers is even $=\frac{9 \cdot 10^{\circ}}{2} = 9 \times 5 \times 10^{5} \implies m = 9, n = 5$
	So $m + n = 14$

<u>Sri Chaitanya IIT Academy., India.</u> PHYSICS

03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

26. A particle is released from height S above the surface of the earth. At certain height its kinetic energy is three times its potential energy. The height from the surface of the earth and the speed of the particle at that instant are respectively.

1)
$$\frac{S}{2}, \frac{3gS}{2}$$
 2) $\frac{S}{4}, \frac{3gS}{2}$ 3) $\frac{S}{4}, \sqrt{\frac{3gS}{2}}$ 4) $\frac{S}{2}, \sqrt{\frac{3gS}{2}}$

Key: 3

Sol: KE + P.E = mgS3P.E + P.E = mgS

$$4 mg S^1 = mg s$$

$$S^{1} = \frac{S}{4}$$

$$K.E = 3mg \frac{S}{4}$$

$$\frac{1}{2} mv^{2} = \frac{3}{4} mgs$$

$$v = \sqrt{\frac{3gs}{4}}$$

V 2

27. Match the List – I with List – II

	LIST – I		LIST - II
A)	Gravitational constant	I)	$\left[LT^{-2}\right]$
B)	Gravitational potential energy	II)	$\left[L^2T^{-2}\right]$
C)	Gravitational potential	III)	$\left[ML^2T^{-2}\right]$
D)	Acceleration due to gravity	IV)	$\left[M^{-1}L^3T^{-2}\right]$

Choose the correct answer from the options given below:

1)
$$A - III, B - II, C - I, D - IV$$
2) $A - I, B - III, C - IV, D - II$ 3) $A - IV, B - III, C - II, D - I$ 4) $A - II, B - IV, C - III, D - I$

Key: 3

Sol: A) Gravitational contact

$$G = \frac{FR^2}{M_1M_2}$$

= $M^{-1}L^3T^{-2}$
B) Gravitational potential energy
 $U = \frac{-GM_1M_2}{R}$

<u> Sr</u>	Sri Chaitanya IIT Academy., India. 03-04-25_2025	Jee-Main_Shift-I_Q.Paper, Key & Sol's
	$=M^{1}L^{2}T^{-2}$	
	C) Gravitational potential	
	$\frac{-GM}{R} = M^0 L^2 T^{-2}$	
	D) Acceleration due to gravity	
	$M^0 L^1 T^{-2}$	
	A - IV, B - III, C - II, D - I	
28.	28. The work function of a metal is $3eV$. The color of the v	isible light that is required to cause
	1) Vallow 2) Plue 2) Croop	(1) Pad
Kev	(ev. 2) Blue 5) Green	4) Ked
Ittey	hc	
Sol:	Sol: $E = \frac{\pi c}{2}$	
	1240	
	$=\frac{1210}{\lambda(nm)}$	
	$\lambda = \frac{1240}{E}$	Carrier 1
	=413nm	
	Among all colours blue colour has the above wavelength	1 A A A A A A A A A A A A A A A A A A A
29.	9. During the melting of a slab of ice at 273 K at atmosphe	ric pressure:
	1) Positive work is done by the ice-water system on the	atmosphere
	2) Positive work is done on the ice-water system by the	atmosphere
	3) Internal energy of the ice-water system decreases.	1
Var	4) Internal energy of ice-water system remains unchange	d
Key		
Sol:	Sol: When a slab of ice at 273K (i,e $0^{\circ}C$) melts in to water,	volume of water formed is less
	compared to volume of ice, i.e volume decreases hence	work done by ice water system is
30	negative. So work done on the ice-water system is positi	ve by aunosphere
50.		1 NOVEN
	·······	
		1 0 0 Hite
		and it was

A piston of mass M is hung from a massless spring whose restoring force law goes as $F = -kx^3$, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height L_0 to L_1 , the total energy delivered by the filament is: (Assume spring to be in its natural length before heating)

L₀

Sri Chaitanya IIT Academy, India. 1) $nRT \ln\left(\frac{L_1^2}{L_0^2}\right) + \frac{Mg}{2}(L_1 - L_0) + \frac{k}{4}(L_1^4 - L_0^4)$ 2) $nRT \ln\left(\frac{L_1}{L_0}\right) + Mg(L_1 - L_0) + \frac{k}{4}(L_1^4 - L_0^4)$ 3) $3nRT \ln\left(\frac{L_1}{L_0}\right) + 2Mg(L_1 - L_0) + \frac{k}{3}(L_1^3 - L_0^3)$ 4) $nRT \ln\left(\frac{L_1}{L_0}\right) + Mg(L_1 - L_0) + \frac{3k}{4}(L_1^4 - L_0^4)$

Key: 2

Sol: At any position of the piston, say at a distance x from the bottom, net force on it is zero

🧟 Sr	i Chaitanya IIT Academy.,	, India.	03-04-25 2025	Jee-Main Shift-I Q.Paper, Key & Sol's
31.	The radii of curvat	ure for a thin conve	x lens are 10 <i>cm</i> and	d 15 <i>cm</i> respectively. The focal
	length of the lens is	s 12 <i>cm</i> . The refract	tive index of the len	s material is
	1) 1.4	2) 1.5	3) 1.2	4) 1.8
Key	: 2			
Sol:	$\frac{1}{f} = \left(\mu - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	$\left(\frac{1}{R_2}\right)$		
	Convex lens			
	$R_1 = +Ve, R_2 = -Ve$	2		
	$\frac{1}{f} = \left(\mu - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	$\left(\frac{1}{R_2}\right)$		
	$\frac{1}{12} = (\mu - 1) \left(\frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right)$	$\left(\frac{1}{15}\right)$		
	$\frac{1}{\frac{12}{6}} = (\mu - 1) \left(\frac{\frac{25}{150}}{\frac{150}{6}} \right)$	-		
	$(\mu) = \frac{1}{2}$			
	$\mu = 1 + \frac{1}{2} = \frac{5}{2}$			
22	$\mu = 1.5$	1 .	11 1 1	11 1 <i>c</i> T 22 11 <i>c</i> 1
32.	A gas is kept in a c	$\frac{1}{2}$ container having wa	27^{0} C T	ally non-conducting. Initially the
	gas nas a volume o	of 800 cm ⁻ and temp	$\frac{1}{3}$	change in temperature when the
	gas is adiabatically	compressed to 200) <i>cm</i> ³ 1s:	
	(1ake $\gamma = 1.3; \gamma$ 1s 1) 227 V	the ratio of specific 2 200 K	2 heats at constant p	ressure and at constant volume) (4) 522 K
Kev	1) 327 K : 2	2) 300 K	3) 000 K	4) 322 K
Sol:	$TV^{\gamma-1} = cont$			
	$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$			
	$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$			
	$(2)^{1.5-1}$			
	$=\left(\frac{800}{200}\right)$			
	$=(4)^{1/2}$			
	$\frac{T_2}{T} = 2$			
	$T_1 = 2T_1$			
	$= 2 \times 300$			
	= 600K			
lee-N	Nain-2025 Anril Sessi	on		14 Page

<u> Sri Chaitanya IIT Academy., India</u> 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's $\Delta T = T_2 - T_1$ =600 - 300= 300K33. A wire of length 25 m and cross-sectional area 5 mm^2 having resistivity of $2 \times 10^{-6} \Omega m$ is bent into a complete circle. The resistance between diametrically opposite points will be 1) 12.5 Ω 2) 50 Ω 3) 100 Ω 4) 25Ω Key: No key (correct answer 2.5Ω) Sol: Resistance $R = \frac{\rho l}{A}$ $=\frac{2\times10^{-6}\times25}{5\times10^{-6}}$ $=10\Omega$ Diametrically opposite points 5Ω $R_{eff} = \frac{5 \times 5}{5 + 5}$

$$=\frac{25}{10}$$

$$=2.5\Omega$$

34. Consider a completely full cylindrical water tank of height 1.6*m* and of cross-sectional area $0.5m^2$. It has a small hole in its side at a height 90*cm* from the bottom. Assume the cross-sectional area of the hole to be negligibly small as compared to that of the water tank. If a load 50kg is applied at the top surface of the water in the tank then the velocity

of the water coming out at the instant when the hole is opened is: $(g = 10 m/s^2)$

👧 Sri Chaitanya IIT Academy., India.

03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

$$P_{0} + \frac{mg}{A} + 0 + \rho g H = P_{0} + \frac{1}{2} \rho V^{2} + \rho g h$$

$$\frac{mg}{A} = \frac{1}{2} \rho V^{2} - \rho g (H - h)$$

$$\frac{50 \times 10}{0.5} = \frac{1}{2} \times 10^{3} V^{2} - 10^{3} \times 10 (1.6 - 0.9)$$

Solving $V = 4m / s$

35. The angle of projection of a particle is measured from the vertical axis as ϕ and the maximum height reached by the particle is h_m . Here h_m as function of ϕ can be presented as

36. The radiation pressure exerted by a 450 W light source on a perfectly reflecting surface placed at 2m away from it, is

37. A parallel plate capacitor is filled equally (half) with two dielectrics of dielectric constants ε_1 and ε_2 , as shown in figures. The distance between the plates is *d* and area of each plate is A. If capacitance in first configuration and second configuration are C_1 and C_2

respectively, then
$$\frac{C_1}{C_2}$$
 is:

42. Two blocks of masses m and M,(M>m), are placed on a friction less table as shown in figure. A massless spring with spring constant k is attached with the lower block. If the system is slightly displaced and released, then

<u> Sri Chaitanya IIT Academy., India.</u> 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's (μ = Coefficient of friction between the two blocks) M A. The time period of small oscillation of the two blocks is $T = 2\pi \sqrt{\frac{(m+M)}{\kappa}}$ B. The acceleration of the blocks is $a = -\frac{kx}{M+m}$ (x-displacement of the blocks from the mean position) C. The magnitude of frictional force on the upper block is $\frac{m\mu|x|}{M+m}$ D. The maximum amplitude of the upper block, if it does not slip, is $\frac{\mu(M+m)g}{k}$ E. Maximum frictional force can be $\mu(M+m)g$ Choose the correct answer from the options given below: 1) C, D, E Only 2) A, B, C Only 3) A, B, D Only 4) B, C, D Only Key: 3 Sol: т M $a = \frac{kx}{M+m}$ Force on upper block is F = ma= kxmM + mOption C is wrong \rightarrow \rightarrow Maximum frictional force is $F = \mu mg$ So option E is wrong 43. A force of 49N acts tangentially at the highest point of a sphere (solid) of mass 20kg, kept on a rough horizontal plane. If the sphere rolls without slipping then the acceleration of the center of the sphere is F 49 N 2) $2.5m/s^2$ 3) $0.35m/s^2$ 4) $3.5m/s^2$ 1) $0.25m/s^2$ Key: 4 Sol: Jee-Main-2025_April Session 19 | Page

<u> Sri Chaitanya IIT Academy., India</u>

03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

 \rightarrow The net force acting on the sphere is the applied force F and the friction force F + f = ma(1)

 \rightarrow The torque is due to the applied force and the frictional force.

$$\tau = FR - fR \qquad (\tau = I\alpha)$$

$$FR - fR = I\alpha$$

$$FR - fR = \frac{2}{5}mR^{2}\left(\frac{a}{R}\right)$$

$$F - f = \frac{2}{5}ma....(2)$$

$$from 1 \& 2 \qquad a = 3.5m / s^{2}$$

44. Which of the following curves possibly represent one-dimensional motion of a particle?

Choose the correct answer from the option given below.

1) A,B and C only 2) A,B and D only 3) A and B only 4) A,C and D only

Key: 2

Sol: A, B belong to linear SHM, time is always positive and increases hence C is wrong In case of body moving in a straight line in forward motion with non- uniform speed. Distance increases with time, hence D is correct.

45. Match the List-I with List-II

	LIST-I		LIST-II
A.	${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2 {}^{1}_{0}n$	Ι	chemical reaction
B.	$2H_2 + O_2 \rightarrow 2H_2O$	II	fusion with +ve Q value

Jee-Main-2025_April Session

20 | Page

<u> Sri Chaitanya IIT Academy., India</u> 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's x $l = \frac{x}{\sqrt{3}}$ $-\frac{1}{\sqrt{3}}\frac{dx}{dt} = \sqrt{2Gm\left(\frac{1}{x} - \frac{1}{a}\right)} \qquad = \frac{-dx}{\sqrt{6Gm\left(\frac{1}{x} - \frac{1}{a}\right)}} = dt$ $\int_{0}^{t} dt = -\int_{a}^{0} \frac{dx}{\sqrt{6Gm\left(\frac{1}{x} - \frac{1}{a}\right)}}$ On the calculation the above integration using method of substitution Put $x = a \cos^2 \theta$, we will get $t\alpha \sqrt{\frac{a^3}{m}}$ $\frac{t_2}{t_1} = \sqrt{\left(\frac{a_2}{a_1}\right)^3 \times \frac{m_1}{m_2}}$ $\frac{t_2}{4} = \sqrt{\left(\frac{2a}{a}\right)^3 \times \frac{m}{2m}}$ $t_2 = 8 \sec \theta$ A 4.0cm long straight wire carrying a current of 8A is placed perpendicular to a uniform 47. magnetic field of strength 0.15 T. The magnetic force on the wire is mN. Key: 48mN Sol: Given $l = 4cm \Rightarrow l = 4 \times 10^{-2} m$ i = 8A B = 0.15TMagnetic force on the wire is $F = Bil \sin \theta$ $\left(\theta = 90^{0}\right)$ $F = 0.15 \times 8 \times 4 \times 10^{-2} \sin 90^{\circ}$ F = 48mNA loop ABCDA, carrying current I=12 A, is placed in a plane consists of two semi-48. circular segments of radius $R_1 = 6\pi m$ and $R_2 = 4\pi m$. The magnitude of the resultant magnetic field at center O is $k \times 10^{-7} T$. The value of k is (Given $\mu_0 = 4\pi \times 10^{-7} TmA^{-1}$)

sri (<u>Chaitanya IIT Academy., India.</u>	03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's
	$\frac{I_1}{I} = \frac{10}{240} = \frac{1}{24}$	
	<i>I</i> ₂ 240 24	
	$I_1 = x$	
	$I_2 = 24x$	
	$\frac{1}{2} = 25x$	
	8	
	$x = \frac{1}{200}$	
	200	
	$I_1 = \lambda$	
	$=\frac{1}{200} \times \frac{1000}{1000}$	
	200 1000	
50	Two coherent monochroma	tic light beams of intensities 4I and 9I are superimposed. The
	difference between the max	kimum and minimum intensities in the interference pattern is
	xI. The value of x is	
Key:	24	
Sol:	$I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2 = \left(\sqrt{4}\right)^2$	$\overline{I} + \sqrt{9I}$ ² = 25 <i>I</i>
	$\max \left(\sqrt{-1} \cdot \sqrt{-2} \right) \left(\sqrt{-1} \cdot \sqrt{-2} \right)$	
	$I_{\min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 = \left(\sqrt{4I_1}\right)^2$	$\left(\overline{I} - \sqrt{9I}\right)^2 = 1I$
	Difference between <i>I</i> an	$dI \cdot = ?$
	I - I = 25I - 1I = 24	I I I I I I I I I I I I I I I I I I I
	$1 \max_{max} 1 \min_{min} 201 11 = 21$	

👷 Sri Chaitanya IIT Academy., India. 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

Key: 2

Sol: Solution -1 which contain 10 mole *x*.

$$M_1 = \frac{n_{(x)}}{V_{(L)}} = \frac{10}{10} = 1 molar$$

Solution -2 contain 1 L of solution-1 + 1 mole of solute x + 1 L of water Total volume of solution -2 = 2L

Total moles of x in solution -2 = 2 mole

$$M_2 = \frac{2 \, mole}{2 \, L} = 1 \, molar$$

Solution – 1 and solution – 2 are equimolar. Hence density molar heat capacity and concentration of solution – 1 and solution – 2 are same. But the (ΔG) Gibbs free energy change of the process of preparation of solution- 2 is negative because the formation of solution is positive entropy driven process whose ΔG is negative (spontaneous process).

55. In the following reactions, which one is **NOT** correct?

<u> Sri Chaitanya IIT Academy.,</u> India. 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's 1) A, C and E only 2) A, D and E only 3) A, B and E only 4) B and E only Key: 3 Sol: The spin-only magnetic moment formula is = $\mu_{BM} = \sqrt{n(n+2)}$ Where n = number of unpaired electrons in d –orbital. A) Cr – (24): $(Ar)3d^{5}4s^{1}$ $Cr^{2+}: (Ar) 3d^4$ d^4 , n = 4 $\mu_{BM} = \sqrt{4(4+2)} = \sqrt{24} = 4.89$ B) Fe-(26) : $(Ar)3d^{6}4s^{2}$ Fe^{2+} : (Ar) $3d^{6}$ $d^{6} = d^{4}, n = 4$ $\mu_{BM} = \sqrt{4(4+2)} = \sqrt{24} = 4.89$ C) Fe-(26): $(Ar)3d^{6}4s^{2}$ $Fe^{3+}:(Ar) 3d^5$ n = 5 $\mu_{BM} = \sqrt{5(5+2)} = \sqrt{35} = 5.91$ D) Co- $(27):(Ar)3d^74s^2$ $Co^{2+}:(Ar) 3d^7$ $d^{7} = d^{3}$ n = 3 $\mu_{BM} = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ E) Mn - $(25): (Ar) 3d^5 4s^2$ Mn^{3+} : $(Ar) 3d^4$ d^4 n = 4 $\mu_{BM} = \sqrt{4(4+2)} = \sqrt{24} = 4.89$ In a reaction $A + B \rightarrow C$, initial concentrations of A and B are related as $[A]_0 = 8[B]_0$. 58. The half lives of A and B are 10 min and 40 min, respectively. If they start to disappear at the same time. Both following first order kinetics, after how much time will the concentration of both the reactants be same? 1) 40 min 2) 60 min 3) 80 min 4) 20 min Key: 1 $Sol: [A]_0 = 8[B]_0$ Half life of A = 10 minHalf life of B = 40 min

<u> Sri Chaitanya IIT Academy., India.</u> 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's Order with respect to A = 1Order with respect to B = 1Let Initial concentration of A be 8 molar then initial concentration of B is 1 molar. At 40 min (four half life of A) $[A] = \frac{[A]_0}{2^4} = \frac{8}{16} = \frac{1}{2}molar$ At 40 min (one half life of B) $\begin{bmatrix} B \end{bmatrix} = \frac{\begin{bmatrix} B \end{bmatrix}_0}{2} = \frac{1}{2} molar$ At 40 min, the concentration of A and B are equal. Among 10^{-9} g (each) of the following elements, which one will have the highest number 59. of atoms? Element: Pb, Po, Pr and Pt 1) *Pb* 2) *Pt* 3) Po 4) Pr Key: 4 Sol: Number of atoms α number of moles Number of atoms $\alpha \frac{weight}{G.Awt}$ Given that weight of given elements are equal. Number of atoms $\alpha \frac{1}{GAWt}$ Among the give list of elements, Pr has the minimum gram atomic weight. Hence Pr contain maximum number of atoms. 60. Match the List – I with List – II List –I List-II (Molecules/ion) (Hybridization of

Ì		ce	ntral atom)
A	PF ₅	Ι	dsp ²
В	SF ₆	II	$sp^{3}d$
C	$Ni(CO)_4$	III	sp^3d^2
D	$\left[PtCl_4\right]^{2-}$	IV	sp ³

Choose the correct answer from the options given below:

1)
$$A - III, B - I, C - IV, D - II$$
 2)
3) $A - I, B - II, C - III, D - IV$ 4)

2) A - IV, B - I, C - II, D - III4) A - II, B - III, C - IV, D - I

Key: 4

Sol:

Molecule/ion
$$\rightarrow$$
 Hybridisation

 $A) PF_5 \to sp^3 d$

<u> Sri Chaitanya IIT Academy., India.</u>

03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

- B) $SF_6 \rightarrow sp^3d^2$ C) $Ni(CO)_4 \rightarrow sp^3$
- D) $\left[PtCl_4\right]^{2-} \rightarrow dsp^2$
- 61. Given below are two statements:

Statement – I: A catalyst cannot alter the equilibrium constant (K_c) of the reaction,

temperature remaining constant.

Statement – **II:** A homogenous catalyst can change the equilibrium composition of a system, temperature remaining constant.

In the light of the above statements, choose the correct answer from the options given below

- 1) Both statement I and statement II are false
- 2) Statement I is false but Statement II is true
- 3) Statement I is true but statement II is false
- 4) Both Statement I and statement II are true

Key: 4

Sol: A catalyst cannot alter the equilibrium constant (K_c) of the reaction, (at constant

temperature). A homogeneous catalyst can change the equilibrium composition of a system.

- 62. Which of the following postulate of Bohr's model of hydrogen atom is not in agreement with quantum mechanical model of an atom?
 - 1) The electron in a H atom's stationary state moves in a circle around the nucleus.

2) An atom in a stationary state does not emit electromagnetic radiation as long as it stays in the same state.

3) An atom can take only certain distinct energies E_1, E_2, E_3 , etc. These allowed states of constant energy are called the stationary states of atom.

4) When an electron makes a transition from a higher energy stationary state to a lower energy stationary state, then it emits a photon of light.

- Key: 1
- Sol: According to the Bhor's postulate, the electron in H atoms stationary state moves in a circle around the nucleus, but according to quantum mechanical model of an atom, it is impossible to locate the accurate position and velocity of the electron and the existence of circular orbits at a accurate distance is over ruled.
- 63. Given below are two statements:

Statement – I: The N - N single bond is weaker and longer than that of P - P single bond.

Statement – II: Compounds of group 15 elements in + 3 oxidation states readily undergo disproportionation reactions.

In the light of the above statements, choose the correct answer from the options given below

- 1) Both statement I and statement II are false
- 2) Statement I is false but Statement II is true
- 3) Statement I is true but statement II is false
- 4) Both Statement I and statement II are true

Sri Chaitanya IIT Academy., India. 03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's Key: 1

- Sol: Because of inter electronic repulsion of non bonding electrons, N N single bond is weaker that P – P single bond. But N – N single bond is shorter than P – P single bond. In case of group – 15 elements, +3 is one of the common oxidation state. Elements in their common oxidation state does not participate in disproportionation reaction rapidly.
- 64 Identify [A], [B] and [C], respectively in the following reaction sequence:

03-04-25 2025 Jee-Main Shift-I Q.Paper, Key & Sol's

- In the following system, $PCl_5(g) \neq PCl_3(g) + Cl_2(g)$ at equilibrium, upon addition of 65. xenon gas at constant T & p, the concentration of
 - 1) PCl₅, PCl₃ & Cl₂ remain constant 2) PCl₃ will increase
 - 3) PCl₅ will increase 4) Cl₂ will decrease

Key: 2

Sol:
$$PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

Since the products side $(PCl_3 and Cl_2)$ has more moles of gas (2 moles) than the reactant side (PCl₅,1mole) the equilibrium will shift to the right.

: Addition an inert gas at constant pressure increases the total volume of the system. \therefore The concentration of *PCl*₃ and *Cl*₂ will increase and the concentrate of will *PCl*₅

decrease.

66. Which of the following statements are correct?

A) The process of adding an electron to a neutral gaseous atom is always exothermic.

B) The process of removing an electron from an isolated gaseous atom is always endothermic.

C) The 1st ionization energy of boron is less than that of beryllium.

D) The electronegativity of C is 2.5 in CH_4 and CCl_4

E) Li is the most electropositive among elements of group I.

Choose the correct answer from the options given below:

2) B, C and E only 3) B and C only 4) A, C and D only 1) B and D only Key: 3

Sol: A) The process of adding an electron to a neutral gaseous atom is generally exothermic because energy is released when an electron is added. But it's not always exothermic. For example adding an electron to a uni-negative ion is endothermic.

B) The process removing an electron from an isolated gaseous atom is always endothermic as it required energy to overcome the attraction between the electron and the nucleus.

C)
$$B_5 - 1s^2 2s^2 2p^1$$
, $Be_4 - 1s^2 2s^2$

🧟 Sri Chaitanya IIT Academy., India.		03-04-25	2025	Jee-Main	Shift-I	Q.Paper,	<u>Key & Sol's</u>
	$\left(Scm^2mol^{-1}\right)$						
H^+	349.6						
Na ⁺	50.1						
K^+	73.5						
Ca^{+2}	119.0						
Mg^{+2}	106.0						
			_				

SECTION-II (NUMERICAL VALUE TYPE)

This section contains 5 Numerical Value Type Questions. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the Nearest Integer value (Example i.e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

🧟 Sri Chaitanya IIT Academy., India.	03-04-25_2025_Jee-Main_Shift-I_Q.Paper, Key & Sol's
moles of $n = x = \frac{w}{gm} = \frac{0.42}{86}$	$\therefore N_2$ gas at STP
moles of n = $\frac{0.42}{80} \times 22.400 = 109.3$	
75. $0.5 g$ of an organic compound on	a combustion gave 1.46 g of CO_2 and $0.9 g$ of H_2O .
The percentage of carbon in the co	ompound is (nearest integer)
[Given: Molar mass (in $g mol^{-1}$)	C:12, H:1, O:16]
Key: 80	
Sol: $C_x H_y + \left\lfloor x + \frac{y}{4} \right\rfloor O_2 \longrightarrow x C O_2 +$	$\frac{y}{2}H_2O$
$\%C = \frac{12}{44} \times \frac{wt CO_2}{wt of organic \ compound}$	$\frac{1}{d} \times 100$
$\%C = \frac{12}{44} \times \frac{1.46}{0.5} \times 100 = 79.63 = 80^{\circ}$	%
	1.3.5 M //
-1000 M	
	and the second se
and a state	
A CINA P	
- 10 P	
14.1	
	U ENADO E