

PERFECT 100 PERCENTILERS JEE MAIN SESSION 1 JAN 2025

65 Students Secured **100** Percentiles[•]

Subject Wise 100 Percentiles in JEE MAIN 2025

S SAI RISHANTH	A MUUDAS MAHAL	PIVUSH PANDA	N HEMANTH ABHIRAM	MANMOHITH REDDY	V ESWAR KARTHIK	D NUTHAN REDDY	K SRI RAGHAVA	P LAKSHMI LASYA
App.No. 250310565519	App.No. 250310754155	App.No. 250310029401	App.No. 250310499764	App.No. 250310154511	App.No. 250310236425	App.No. 250310237342	App.No. 250310240010	App.No. 250310630103
ARNAV NIGAM	SHREYAS S	BUDUMU MAHANTH	R SAI KIRAN	G ROHIT PAWAN	MARJUN GOWDA	LOUKYA N	ABIRAAMI K	S HEMA HAVIL
App.No. 250310026446	App.No. 250310485787	App.No. 250310672360	App.No. 250310351402	App.No. 250310777503	App.No. 250310492158	App.No. 250310235400	App.No. 250310337578	App.No. 250310467818
KUSHAL N App.No. 250310413022	ALLABHYA PAREEK App.No. 250310277087	Карр. No. 250310969414	MADDU ROHIT App.No. 250310415670	K HAMSHINI App.No. 250310191070	MLAKSHMANA SEPUR App.No. 250310282416	App.No. 250310242521	KANNEBOYENA SATVIK App.No. 250310480858	VANNALE ADEEP App. No. 250310669118

PIYUSH SARKAR

y

B ROHITH DATTA

M R V GANESH ROYAL

M VISHAL KUMAR

N V VISHAL REDDY

& Many More...

S HARICHARAN

Congratulations to Students, Parents & Staff

#TransformingYourDreamsIntoReality

in One or More Subjects

处 040 66 06 06 06

🕚 srichaitanya.net

🔋 Sri Chaitanya IIT Academy., India.

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

MATHEMATICS

(SINGLE CORRECT ANSWER TYPE)

This section contains **20 Multiple Choice Questions**. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

01. Given below are two statements:

Statement-I:
$$\lim_{x \to 0} \left(\frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5}$$

Statement-II: $\lim_{x \to 1} \left(\frac{2}{x^{1-x}} \right) = \frac{1}{e^2}$

In the light of the above statements, choose the correct answer from the options given below.

1) Both statement I and Statement II are true

2) Both statement I and Statement II are false

3) Statement I is true but statement II is false

4) Statement I is true but statement II is true

Key: 1

Sol:
$$L = \lim_{x \to 0} \frac{\tan^{-1} x + \frac{1}{2} (\log_e (1+x) - \log_e (1-x)) - 2x}{x^5}$$
$$= \lim_{x \to 0} \frac{\left(x - \frac{x^3}{3} + \frac{x^5}{5} \dots \right) + \frac{1}{2} \left(x - \frac{x^2}{2} + \frac{x^3}{3} \dots \right) - \frac{1}{2} \left(-x - \frac{x^2}{2} - \frac{x^3}{3} \dots \right) - 2x}{x^5}$$
$$= \lim_{x \to 0} \frac{x^5 \left(\frac{1}{5} + \frac{1}{10} + \frac{1}{10}\right) + x^7 (\dots) + \dots}{x^5} = \frac{2}{5}$$
$$\Rightarrow \text{Statement I is true}$$
$$\text{S-II } L = \lim_{x \to 1} x^{\left(\frac{2}{1-x}\right)} \left\{1^{\infty}\right\}$$

Max Marks: 100

🧟 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions $e^{\lim_{x \to 1} \left(\frac{2}{1-x}\right)(x-1)} = e^{-2}$ \Rightarrow Statement II is true Let $A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{bmatrix}$. If det $(adj(adj(3A))) = 2^m \cdot 3^n, m, \in N$, then m+n is equal to 02. 1) 22 3) 24 2) 26 4) 20 Key: 3 Sol: $|A| = \begin{vmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{vmatrix}$ $R_2 \rightarrow R_2 - 2R_1; R_3 \rightarrow R_3 - 3R_1$ $A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 0 & 2 & 4+p \\ 0 & 6 & 14+3p \end{bmatrix}$ =2(28+6p-24-6p)=2(4) = 8Now, $adj.(adj(3A)) = |3A|^{1}(3A)$ $=3^{3}|A|(3A)$ $=3^3 \times 2^3 \times 3^1 A$ $= 2^{3}3^{4}A$ $\Rightarrow \det(adj.(adj.(3A))) = \det.(2^33^4A)$ $(2^{3}3^{4})^{3}|A|$ $= 2^{9}3^{12} \times 2^{3} = 2^{12}3^{12}$ \Rightarrow *m* = 12, *n* = 12 \Rightarrow *m* + *n* = 24 Let a be the length of a side of square OABC with O being the origin. Its side OA makes 3. an acute angle α with the positive x-axis and the equations of its diagonals are $(\sqrt{3}+1)x + (\sqrt{3}-1)y = 0$ and $(\sqrt{3}-1)x - (\sqrt{3}+1)y + 8\sqrt{3} = 0$. Then a^2 is equal to 1) 24 2) 48 3) 32 4) 16 Key: 2 Sol: Given diagonals are $(\sqrt{3}+1)x + (\sqrt{3}-1)y = 0 \& (\sqrt{3}-1)x - (\sqrt{3}+1)y + 8\sqrt{3} = 0$ On solving, $P(\sqrt{3}-3,3+\sqrt{3})$ is centre of the given square $\Rightarrow OP = 2\sqrt{6} = \frac{a}{\sqrt{2}}$ $a = 4\sqrt{3}$ $\Rightarrow a^2 = 48$

👧 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions There are 12 points in a plane, no three of which are in the same straight line, except 5 4. points which are collinear. Then the total number of triangles that can be formed with the vertices at any three of these 12 points is 1)2302) 210 4) 200 3) 220 Key: 2 **Sol:** No of traingles $=^{12} C_3 - ^5 C_3$ = 220 - 10= 210Let f(x) = x - 1 and $g(x) = e^x$ for $x \in \mathbb{R}$. If $\frac{dy}{dx} = \left(e^{-2\sqrt{x}}g(f(x)) - \frac{y}{\sqrt{x}}\right), y(0) = 0$, then y(1) is 5. 1) $\frac{1-e^3}{e^4}$ 2) $\frac{e-1}{e^4}$ 3) $\frac{2e-1}{e^3}$ 4) $\frac{1-e^2}{e^4}$ **Key: 2 Sol:** f(x) = x - 1, $g(x) = e^{x}$ $\Rightarrow f(f(x)) = (x-1)-1 = x-2$ $\Rightarrow g(f(f(x))) = e^{x-2} \Rightarrow \frac{dy}{dx} = e^{-2\sqrt{x}} \cdot e^{x-2} - \frac{y}{\sqrt{x}} \Rightarrow \frac{dy}{dx} + \frac{1}{\sqrt{x}} \cdot y = e^{x-2\sqrt{x}-2}$ $If = e^{\int \frac{1}{\sqrt{x}} dx} = e^{2\sqrt{x}}$ G.S $y \cdot e^{2\sqrt{x}} = \int e^{x-2} dx = e^{x-2} + C$ $y(0) = 0 \Longrightarrow 0 = e^{-2} + C \Longrightarrow C = -e^{-2}$ \Rightarrow y. $e^{2\sqrt{x}} = e^{x-2} - e^{-2}$ At x = 1, $y \cdot e^2 = e^{-1} - e^{-2} \Rightarrow y = e^{-3} - e^{-4} = \frac{e^{-1}}{e^4}$ 6. If $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{2^4} + \dots \infty = \frac{\pi^4}{100}$, $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{5^4} + \dots \infty = \alpha,$ $\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots \infty = \beta,$ then $\frac{\alpha}{\beta}$ is equal to 1.18 2.233.15 4.24 Key: 3 **Sol:** Given $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{2^4} + \dots = \frac{\pi^4}{2^6}$ $\Rightarrow \left(\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots\right) + \left(\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots\right) = \frac{\pi^4}{90}$ Also, $\beta = \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots$ $\Rightarrow \beta = \frac{1}{2^4} \left(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{2^4} + \dots \right)$ $\Rightarrow \beta = \frac{1}{16} \times \frac{\pi^4}{90}$ Put in (1) $\alpha = \frac{15}{16} \times \frac{\pi^4}{90}$ $\Rightarrow \frac{\alpha}{\beta} = 15$ Jee-Main-2025_Jan Session 3 | Page

🧟 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions Let $A = \{0, 1, 2, 3, 4, 5\}$. Let R be a relation on A defined by $(x, y) \in R$ if and only if max 7. $\{x, y\} \in \{3, 4\}$. Then among the statements S_1 : The number of elements in R is 18, and S_{2} : The relation R symmetric but neither reflexive nor transitive 1) Only S_1 is true 2) Both are true 3) Only S_2 is true 4) Both are false Key: 4 **Sol:** S-1: No. of elements $= 2^2 + 2 \times 3 + 3 \times 2$ =4+6+6=16 \Rightarrow S₁ is false S-2: R is not reflexive R is symmetric R is transitive \Rightarrow S_2 is false The number of integral terms in the expansion of $\left(5^{\frac{1}{2}} + 7^{\frac{1}{8}}\right)^{100}$ is 8. 1) 129 2) 128 3) 127 4) 130 Key: 2 Sol: $\left(5^{\frac{1}{2}}+7^{\frac{1}{8}}\right)^{1016} = \sum_{r=0}^{1016} {}^{1016}C_r 5^{\frac{1016-r}{2}}7^{\frac{r}{8}}$ \Rightarrow For integral terms, $r = 8\lambda, \lambda \in W$ \Rightarrow No. Of integral terms =128 **09.** The sum of squares of the roots of $|x-2|^2 + |x-2|^2 = 0$ and the squares of the roots of $x^{2}-2|x-3|-5=0$, is 4) 24 1) 26 2) 36 3) 30 Key: 2 $|x-2|^2 + |x-2| - 2 = 0$ **Sol:** |x-1| = -2 or |x-2| = 1is not possible $x-2 = \pm 1$ x = 1 or 3 $x^2 - 2|x - 3| - 5 = 0$ if x < 3 $x^{2} + 2x - 6 - 5 = 0$ $x^{2} + 2x - 11 = 0$ $x = \frac{-2 \pm \sqrt{48}}{2}$ $=\frac{-2\pm 4\sqrt{3}}{2}=-1\pm 2\sqrt{3}$

Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_

08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

if $x \ge 3$ $x^2 - 2x + 6 - 5 = 0$ $(x-1)^2 = 0$ x = 1No solution since $x \ge 3$ Sum of the squares $= 1^2 + 3^2 + (2\sqrt{3} - 1)^2 + (-(2\sqrt{3} + 1))^2$ = 36**10.** The integral $\int_{-\infty}^{\frac{3}{2}} (|\pi^2 x \sin(\pi x)|) dx$ is equal to: **2)** $1+3\pi$ **3)** $4+\pi$ **4)** $2+3\pi$ **1)** $3+2\pi$ **Key: 2 Sol:** $\int_{-\infty}^{\infty} |\pi^2 x \sin \pi x| dx.$ $\int_{0}^{\frac{1}{2}} \left| \pi^{2} x \sin \pi x \right| dx.$ $t = \pi x \Longrightarrow dt = \pi dx.$ $l = \pi x \rightarrow \infty$ $\int_{-\pi}^{\frac{3\pi}{2}} |t\sin t| dt = \int_{-\pi}^{\pi} |t\sin t| dt + \int_{\pi}^{\frac{3\pi}{2}} |t\sin t| dt$ $=2\int_{-\infty}^{\pi}t\sin t \, dt - \int_{-\infty}^{\frac{3\pi}{2}}t\sin t \, dt$ $=3\pi+1$ (by using integration by parts) **11.** If A and B are two events such that P(A) = 0.7, P(B) = 0.4 and $P(A \cap \overline{B}) = 0.5$, where \overline{B} denotes the compliment of B, then $P(B(A \cup \overline{B}))$ is equal to 1) $\frac{1}{2}$ **2**) $\frac{1}{4}$ **3**) $\frac{1}{6}$ **4**) $\frac{1}{2}$ **Key: 2 Sol:** $P(A) = 0.7 \quad P(B) = 0.4 \quad P(A \cap \overline{B}) = 0.5$ $P(A) - P(A \cap B) = 0.5$ $P(A \cap B) = 0.2$ $P\left(B \mid A \cup \overline{B}\right) = P\left(\frac{B \cap \left(A \cup \overline{B}\right)}{P\left(A \cup \overline{B}\right)}\right) = \frac{P\left(A \cap B\right)}{P\left(A \cup \overline{B}\right)} = \frac{0.2}{0.8} = \frac{1}{4}$ WHERE $P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A \cap \overline{B})$ = 0.7 + 0.6 - 0.5= 0.8

🧟 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions 12. Let the function $f(x) = \frac{x}{3} + \frac{3}{x} + 3$, $x \neq 0$ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $\sum_{i=1}^{5} \alpha_i^2$ is equal to 2) 40 1) 36 3) 28 4) 48 Key: 1 Sol: $f^{\dagger}(x) = \frac{1}{3} - \frac{3}{2}$ $=\frac{x^2-9}{2x^2}=\frac{(x+3)(x-3)}{3x^2}$ For strictly increasing $f^{\dagger}(x) > 0 \Longrightarrow x \in (-\infty, -3) \cup (3, \infty)$ For strictly increasing $f^{\mid}(x) < 0 \Rightarrow x \in (-3,0) \cup (0,3)$ $\therefore \alpha_1 = -3, \alpha_2 = 3$ $\alpha_3 = -3, \alpha_4 = 0$ $\alpha_5 = 3$ $\sum_{i=1}^{3} \alpha_i^2 = 36$ 13. Let the values of λ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$ and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be λ_1 and λ_2 . Then the radius of the circle passing through the points $(0,0),(\lambda_1,\lambda_2)$ and (λ_2,λ_1) is **4**) $\frac{\sqrt{2}}{2}$ 1) 4 **2)** $\frac{5\sqrt{2}}{2}$ 3) 3 **Key: 2** Sol: Shortest distance = $\frac{\left| \begin{array}{c} a_2^- - a_1^- & b_1^- & b_2^- \end{array} \right|}{\left| b_1^- \times b_2^- \right|} = \frac{1}{\sqrt{6}}$ $=\left|\frac{3-\lambda}{\sqrt{6}}\right|=\frac{1}{\sqrt{6}}$ $|\lambda - 3| = 1$ $\lambda - 3 = \pm 1$ $\lambda = 4, 2$ Radius of circle through (0,0) (2,4) (4,2) is $\frac{5\sqrt{2}}{2}$ **14.** Let the ellipse $3x^2 + py^2 = 4$ pass through the center C of the circle $x^2 + y^2 - 2x - 4y - 11 = 0$ of radius r. Let f_1, f_2 be the focal distances of the point C on the ellipse. Then $6f_1f_2 - r$ is equal to 1) 68 2) 78 3) 74 4) 70 Key: 4

🧟 Sri Chaitanya IIT Academy., India. 🗌

08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

Sol:

Ellipse
$$3x^2 + py^2 = 4$$

Circle $x^2 + y^2 - 2x - 4y - 11 = 0$
 $r = 4$ center $C(1,2)$ lies on Ellipse
 $\therefore 3.1^2 + p(4) = 4$
 $4p = 1 \Longrightarrow p = \frac{1}{4}$
equation of Ellipse is $\frac{x^2}{\frac{4}{3}} + \frac{y^2}{16} = 1$
 $e^2 = \frac{11}{12}$
 $f_1 f_2 = b^2 - e^2 y_1^2 = \frac{37}{3}$
 $6f_1 f_2 - r = 70$

15. A line passing through the point P(a,0) makes an acute angle α with the positive x-axis. Let this line be rotated about the point P through an angle $\frac{\alpha}{2}$ in the clock-wise direction. If in the new position, the slope of the line is $2-\sqrt{3}$ and its distance from the origin is $\frac{1}{\sqrt{2}}$, then the value of $3a^2 \tan^2 \alpha - 2\sqrt{3}$ is

1) 6 2) 4 3) 8 4) 5 Key: 2 Sol: $\operatorname{Tan} \frac{\alpha}{2} = 2 - \sqrt{3} = \tan \frac{\pi}{12}$ $\alpha = \frac{\pi}{6}$ Equation of new line is $y - 0 = \tan \frac{\alpha}{2}(x - a)$ $\left| -a \tan \frac{\alpha}{2} \right|$

distance from
$$(0,0) = \frac{|2|}{\sqrt{1 + \tan^2 \frac{\alpha}{2}}} = \frac{1}{\sqrt{2}}$$
$$\frac{a \tan \frac{\alpha}{2}}{\sec \frac{\alpha}{2}} = \frac{1}{\sqrt{2}} \Rightarrow a = \sqrt{3} + 1$$

 $3a^2\tan^2\alpha - 2\sqrt{3} = 4$

16. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. The n \hat{c} be a unit vector in the plane of the vectors \vec{a} and \vec{b} and be perpendicular to \vec{a} , Then such a vector \hat{c} is:

Sol Chartemen IIT Reademy. India.
OB-Apr-2025_Job-Main_2025_Shift-02_Q.Paper, Key and Solutions
1)
$$\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$$
 2) $\frac{1}{\sqrt{3}}(\hat{-}\hat{i}+\hat{j}-\hat{k})$ **3)** $\frac{1}{\sqrt{5}}(\hat{j}-2\hat{k})$ **4)** $\frac{1}{\sqrt{2}}(\hat{-}\hat{i}+\hat{k})$
Key: 4
Sol: Let $\bar{c} = x\bar{a} + y\bar{b}$
 $|\bar{a}| = \sqrt{6}$
 $|\bar{b}| = \sqrt{6}$
 $\bar{a}\bar{b} = 3$
Apply let product with \bar{a}
 $\bar{a}\bar{b} = 3$
 $x = y = \frac{1}{\sqrt{6}}$
 $1 = 6x^2 + 6y^2 + 6xy$ 1
 $\bar{c}^2 = x^2\bar{a}^2 + y^2\bar{b}^2 + 2xt(\bar{a}\bar{b})$
 $1 = 6x^2 + 6y^2 + 6xy$ 2
By solving $1 \neq 2$
 $x = t + \frac{1}{3\sqrt{2}} = y = \mp \frac{2}{3\sqrt{2}}$
 $\therefore \bar{c} = \frac{1}{\sqrt{2}}(-\hat{i}+\hat{k})$
17. The value of $\cot^{-1}\left(\frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)}\right) - \cot^{-1}\left(\frac{\sqrt{1 + \tan^2(\frac{1}{2})} + 1}{\tan(\frac{1}{2})}\right)$ is equal to
 $1) \pi - \frac{5}{4}$ 2) $\pi + \frac{5}{2}$ 3) $\pi + \frac{3}{2}$ 4) $\pi - \frac{3}{2}$
Key: 1
Sol: $E = \cot^{-1}\left(\frac{-\sec 2 - 1}{\tan 2}\right) - \cot^{-1}\left(\frac{\sec \frac{1}{2} + 1}{\tan \frac{1}{2}}\right)$
 $= \cot^{-1}\left(-\left(\frac{1 + \cos 2}{\sin 2}\right)\right) - \cot^{-1}\left(\frac{1 + \cos \frac{1}{2}}{\sin \frac{1}{2}}\right)$
 $= \cot^{-1}(-(\cot 1) - \cot^{-1}(\cot \frac{1}{4})$
 $= \pi - 1 - \frac{1}{4} = \pi - \frac{5}{4}$
18. Let $A = \left\{ \theta \in [0, 2\pi] : 1 + 10 \operatorname{Re}\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = 0 \right\}$. Then $\sum_{\theta \neq A} \theta^2$ is equal to

Solitions if the adverge india
1)
$$\frac{27}{4}\pi^2$$
 2) $\frac{21}{4}\pi^2$ 3) $6\pi^2$ 4) $8\pi^2$
Key: 2
Sol: Given $1+10 \operatorname{Re} al\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3\sin\theta}\right) = 0$
 $\Rightarrow 1+10 \operatorname{Re} al\left(\frac{(2\cos\theta + i\sin\theta)(\cos\theta + 3i\sin\theta)}{\cos^2\theta + 9\sin^2\theta}\right) = 0$
 $\Rightarrow 1+10 \left[\frac{2\cos^2\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta}\right] = 0 \Rightarrow 21\cos^2\theta = 21\sin^2\theta$
 $\Rightarrow \tan^2\theta = 1 = \tan^2\frac{\pi}{4} \Rightarrow \theta = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}, \theta \in [0, 2\pi]$
If $n=0, \theta = \frac{\pi}{4}$
 $n=1, \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$
 $n=2, \theta = \frac{7\pi}{4}, \frac{9\pi}{4}$
 $\therefore \sum_{\theta = \pi} \theta^2 = \frac{1}{16} + \frac{9\pi^2}{16} + \frac{49\pi^2}{16} = \frac{84\pi^2}{16} = \frac{21\pi^2}{4}$
19. Let α be a solution of $x^2 + x + 1 = 0$, and for some a and b in
R, $[4 \ a \ b] \begin{bmatrix} 1 & 16 & 13\\ -1 & -1 & 2\\ -2 & -14 & -8 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$. If $\frac{4}{\alpha^4} + \frac{m}{\alpha^6} + \frac{\pi}{\alpha^6} = 3$, then $m+n$ is equal to ______ (a + 1) = 0
 $\Rightarrow a + 2b = 4 \dots(1)$
 $a + 14b = 64 \dots(2)$
 $2a - 3b = -52 \dots(3)$
Solving (1), (2), (3), we get $a = -6, b = 5$
Given equation is $\frac{4}{\alpha^4} + \frac{m}{\alpha^4} + \frac{n}{\alpha^6} = 3$ ($\because \alpha$ is root of $x^2 + x + 1 = 0$ ie $\alpha = w$ or w^2)
 $\Rightarrow \frac{4}{w} + m + \frac{\pi}{w^2} = 3$ ($\because a = -6, b = 5$)
 $\Rightarrow 4w^2 + m + nw = 3$
 $\Rightarrow 4w^2 + 4w + m = 3$ if $n = 4$

👧 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions $\Rightarrow 4(w^2 + w) + m = 3$ $\Rightarrow 4(-1) + m = 3$ \Rightarrow n=7, n=4 $\therefore m+n=11$ Let f(x) be a positive function and $I_1 = \int 2xf(2x(1-2x)) dx$ and 20. Key: 2 **Sol:** $I_1 = \int_{1}^{1} 2xf(2x(1-2x))dx$ Put 2x = t L.L at $x = \frac{-1}{2}, t = -1$ $dx = \frac{dt}{2}$ U.L at x = 1 then t = 2 $\therefore I_1 = \int_{-\infty}^{\infty} t f(t(1+t)) \frac{dt}{2}$ By king's property $I_{1} = \frac{1}{2} \int_{-\infty}^{\infty} (1-t) f[(1-t)t] dt$ $I_1 = \frac{1}{2} \int_{-1}^{1} (1-t) f(t(1-t)) dt \quad \dots \dots (2)$ \therefore (1) + (2), $2I_1 = \frac{1}{2} \int_{-1}^{2} f(t(1-t)) dt$ $\Rightarrow 2I_1 = \frac{1}{2}I_2$ $\Rightarrow \frac{I_2}{L} = 4$ SECTION-II (NUMERICAL VALUE TYPE)

This section contains **5 Numerical Value Type Questions**. The Answer should be within **0 to 9999**. If the Answer is in **Decimal** then round off to the **Nearest Integer** value (Example i.e. If answer is above **10** and less than **10.5** round off is **10** and If answer is from **10.5** and less than **11** round off is **11**).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases...

🧟 Sri C	haitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions
21.	Let the area of the triangle formed by the lines $x + 2 = y - 1 = z$, $\frac{x - 3}{5} = \frac{y}{-1} = \frac{z - 1}{1}$ and
	$\frac{x}{-3} = \frac{y-3}{3} = \frac{z-2}{1}$ be A. Then A^2 is equal to
Key :	56
Sol :	Given lines are $\frac{x+2}{1} = \frac{y-1}{1} = \frac{z}{1} = t(say)$
	$\Rightarrow (x, y, z) = (t - 2, t + 1, t) \dots \dots \dots (1)$
	$\frac{x-3}{5} = \frac{y}{-1} = \frac{z-1}{1} = s (say)$
	\Rightarrow (x, y,z)=(5s+3, -s, s+1)(2)
	x - y - 3 - z - 2 - r (z - z)
	$\frac{-3}{-3} = \frac{-3}{3} = \frac{-1}{1} = r(3uy)$
	$\Rightarrow (x, y, z) = (-3r, 3r+3, r+2) \dots (3)$
	(1) \cap (2); $A = (-2, 1, 0)$
	(2) \cap (3); $B = (3,0,1)$ (2) $-(1)$, $G = (0,2,2)$
	$(3) \cap (1); C = (0, 3, 2)$
	Dr's of $AB = (5, -1, 1)$
	AC = (-2, -2, -2)
	Area of $\Delta le \ ABC = \frac{1}{2} \left\ \overleftrightarrow{AB} \times \overleftrightarrow{AC} \right\ $
	$=\frac{1}{2} \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 5 & -1 & 1 \\ -2 & -2 & -2 \end{vmatrix}$
	$=\frac{1}{2} (-2)\begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 5 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$
	=6 (-2,-4,-6)
	=2 (1,2,3)
	$=2\sqrt{1+4+9}$
	$A = 2\sqrt{14} \Longrightarrow A^2 = 4(14) = 56$
22.	Let the area of the bounded region
	$\{(x, y): 0 \le 9x \le y^2, y \ge 3x - 6\}$ be A. Then 6A is equal to
Key :	81
Sol :	Let $y^2 = 9x \dots (1)$ $y = 3x - 6 \dots (2)$
	(1) \cap (2); $x = 1, 4$
	x = 1, y = -3; x = 4, y = 6

🞅 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions R. Area A = $\int_{-\infty}^{\infty} \left| \frac{y+6}{3} - \frac{y^2}{9} \right| dy$ $A = \frac{27}{2} \implies 6A = 81$ The product of the last two digits of (1919)¹⁹¹⁹ is _____ 23. Key: 63 **Sol:** $E = (1919)^{1919}$ $\equiv (1920 - 1)^{1919}$ $=1919C_{0}(1920)^{1919}-1919C_{1}(1920)^{1918}+\ldots+1919c_{1918}(1920)^{1}-1919C_{1919}(1)$ For last '2' digits : $1919C_{1918}(1920) - 1$ = 3684479So last '2' digits is 79 and product of two digits $7 \times 9 = 63$ 24. Let r be the radius of the circle, which touches x-axis at point (a,0), a < 0 and the parabola $y^2 = 9x$ at the point (4, 6). Then r is equal to _____ Key: 30 **Sol**: Equation of normal to $y^2 = 9x$ at P(4, 6) is 4x + 3y = 34(1) Let centre of circle C(x,r)'C' lies on (1) 4x + 3r = 34 $\Rightarrow x = \frac{34 - 3r}{4} \dots (2)$ Now CP = r $CP^{2} = r^{2} \implies \left(\frac{34-3r}{4}-4\right)^{2} + (r-6)^{2} = r^{2}$ Simplifying we get [r=30] or $\frac{10}{2}$ rejected Let the domain of the function $f(x) = \cos^{-1}\left(\frac{4x+5}{3x-7}\right)$ be $[\alpha, \beta]$ and the domain of 25. $g(x) = \log_2(2 - 6\log_{27}(2x + 5))$ be (γ, δ) . Then $|7(\alpha + \beta) + 4(\gamma + \delta)|$ is equal to _____ Key: 96 Sol: $f(x) = \cos^{-1}\left(\frac{4x+5}{3x-7}\right)$ $g(x) = \log_2(2-6\log_{27}(2x+5))$ Meaningful when $-1 \le \frac{4x+5}{3x-7} \le 1$ $C_1: -1 \le \frac{4x+5}{2x-7} \le 1$

🧐 Sri Chaitanya IIT Academy., India.	08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solution	ons
$\Rightarrow \frac{7x-2}{3x-7} \ge 0 \text{ and } x \neq \frac{7}{3}$		
$\Rightarrow x \le \frac{2}{7} \text{ or } x \ge \frac{7}{3} \text{ and } x \ne \frac{7}{3}$		
$x \in \left(-\infty, \frac{2}{7}\right] \cup \left(\frac{7}{3}, \infty\right)$		
$C_2: \frac{4x+5}{3x-7} \le 1$		
$\Rightarrow \frac{x+12}{3x-7} \le 0 \text{ and } x \neq \frac{7}{3}$		
$\Rightarrow xt\left[-12,\frac{7}{3}\right] \Rightarrow x \in [\alpha,\beta],$	$, \alpha = -12, \beta = \frac{7}{3}$	
$g(x) = \log_2 \left(2 - 6 \log_{27} (2x + 1) \right)$	5))	
Meaningful when		
$2-6\log_{27}(2x+5) > 0$ and 2	$x + 5 > 0 \& 2x + 5 \neq 0$	
$x > \frac{-5}{2}ax$	$nd \ x \neq \frac{-5}{2}$	
$\Rightarrow (2x+5)^2 < 3^2$		
\Rightarrow (x+4)(x+1) < 0		
$\Rightarrow x \in (-4, -1) \& x > \frac{-5}{2} \& x$	$x \neq \frac{-5}{2}$	
$\Rightarrow x \in \left(\frac{-5}{2}, -1\right) \Rightarrow x \in (\gamma, \delta)$)	
$\Rightarrow \gamma = \frac{-5}{2}, \delta = -1$		
$\therefore 7(\alpha+\beta)+4(\gamma+\delta) = 7(-\beta) $	$-12 + \frac{2}{7} + 4\left(\frac{-5}{2} - 1\right)$	
= 7	$\left(\frac{-82}{7}\right) + 4\left(\frac{-7}{2}\right) = 96$	

🧟 Sri Chaitanya IIT Academy., India. PHYSICS

08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

marks:100

SECTION-I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

26. A rod of linear mass density ' λ ' and length 'L' is bent to form a ring of radius R'. Moment of inertia of ring about any of its diameter is

1)
$$\frac{\lambda L^3}{4\pi^2}$$
 2) $\frac{\lambda L^3}{12}$ 3) $\frac{\lambda L^3}{16\pi^2}$ 4) $\frac{\lambda L^3}{8\pi^2}$

Key: 4

Sol : Moment of inertia of ring about its Diameter = $\frac{MR^2}{2}$

Here
$$M = \lambda L$$

$$L = 2\pi R \implies R = \frac{L}{2\pi}$$
$$I = \frac{\lambda \left(\frac{L}{2\pi}\right)^2}{2} = \frac{\lambda L^3}{8\pi^2}$$

27. Figure shows a current carrying square loop ABCD of edge length is 'a' lying in a plane. If the resistance of the ABC part is r and that of ADC part is 2r, then the magnitude of the resultant magnetic field at centre of the square loop is

Key : 1

Sol: According to Biot-savert law the magnetic field due to a strait current carrying wire

$$B = \frac{\mu_o i}{4\pi r} (Sin\alpha + Sin\beta)$$

= Due to part AB + part BC

$$= \frac{\mu_0 i_1}{4\pi \ a/2} (Sin 45^0 + Sin 45^0) + \frac{\mu_0 i_1}{2\pi \ a/2} (Sin 45^0 + Sin 45^0)$$
$$= \frac{\mu_0 i_1}{2\pi a} \left(\frac{1}{\sqrt{2}} \times 2\right) 2 \otimes \dots (I)$$

Due to ADC

= Due to part AD + Due to part DC

Si Chaitanya III Academy, Imita.
08-Apr-2025_Jee-Main_2025_Shift-02_0.Paper. Key and Solutions

$$= \frac{\mu_0 i_2}{4\pi} \frac{q}{2} (Sim 45^0 + Sim 45^0) + \frac{\mu_0 i_2}{4\pi} \frac{q}{2} (Sim 45^0 + Sim 45^0)$$

$$= \frac{\mu_0 i_2}{2\pi a} \frac{q}{\sqrt{2}} (1 + \frac{1}{\sqrt{2}}) + \frac{\mu_0 i_2}{2\pi a} (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}) \odot$$

$$= \frac{\mu_0 i_2}{2\pi a} \frac{q}{\sqrt{2}} (2) \odot \dots \dots (II)$$
Due to total square loop the magnetic field at the centre is

$$= Equation (I) + Equation (II)$$

$$B = \frac{\mu_0}{2\pi a} \frac{q}{\sqrt{2}} (i_1 - i_2) \dots (III)$$

$$i_1 + i_2 = I \qquad i_1 = \frac{R_2}{R_1} = \frac{2r}{r}$$

$$\Rightarrow i_1 = \frac{2}{3}I, \ i_2 = \frac{1}{3}I$$

$$\therefore (III) = B = \frac{\mu_0}{\sqrt{2\pi a}} (\frac{2}{3} - \frac{1}{3})I$$

$$= \frac{\mu_0 2I}{3\sqrt{2\pi a}} = \frac{\sqrt{2}\mu_0 I}{3\pi a}$$
28. A 3 m long wire of radius 3 mm shows an extension of 0.1 mm when loaded vertically by
a mass of 50 kg in an experiment to determine Young's modulus of the wire as per this
experiment is $P \times 10^{11} Nm^2$, where the value of P is: (Take $g = 3\pi m/s^2$)
1) 10 2) 2.5 3) 25 4) 5
Key: 4
Sol: $Y = \frac{FL}{Ae} = \frac{mgL}{\pi r^2 e}$

$$m = 50 \text{ kg}, \ g = 3\pi m/s^2, \ L = 3m$$
 $r = 3 \times 10^{-3}m, \ e = 0.1 \times 10^{-3}$
 $y = 5 \times 10^{11} Nm^2$
29. An infinitely long wire has uniform linear charge density $\lambda = 2nC/m$. The net flux
through a Gaussian cube of side length $\sqrt{3} cm$, if the wire passes through any two corners
of the cube, that are maximally displaced from each other, would be $x Nm^2 C^{-1}$, where x
is :
[Neglect any edge effects and use $\frac{1}{4\pi x_0} = 9 \times 10^9 \text{SI units}$]
1) 0.72π 2) 6.48π 3) 1.44π 4) 2.16π
Key: 4
Sol:

Г

as **Reason R**

Assertion A : Work done in moving a test charge between two points inside a uniformly charged spherical shell is zero, no matter which path is chosen.

Reason R: Electrostatic potential inside a uniformly charged spherical shell is constant and is same as that on the surface of the shell.

In the light of the above statements, choose the correct answer from the options given below 1) A is true but R is false

- 2) A is false but **R** is true
- 3) Both A and R are true but R is NOT the correct explanation of A
- 4) Both A and R are true and R is the correct explanation of A

Key:4

Sol: Assertion is true since the potential is constant every where in the shell

$$w = (V_2 - V_1)q$$
$$= 0$$

Reason is true as $V = \frac{KQ}{R}$ from centre to surface

'R' is correct explanation for 'A'

- **31.** In a Young's double slit experiment, the source is white light. One of the slits is covered by red filter and another by a green filter. In this case
 - 1) there shall be no interference fringes
 - 2) there shall be alternate interference fringes of red and green
 - 3) there shall be an interference pattern, where each fringe's pattern center is green and outer edges is red

😤 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

4) there shall be an interference pattern for red distinct from that for green

Key: 1

- **Sol :** There will be no interference as the two sources are "incoherent" Since the wavelengths are not same
- **32.** A block of mass 2 kg is attached to one end of a massless spring whose other end is fixed at a wall. The spring-mass system moves on a frictionless horizontal table. The spring's natural length is 2 m and spring constant is 200 N/m. The block is pushed such that the length of the spring becomes 1 m and then released. At distance x m (x < 2) from the wall, the speed of the block will be

1)
$$10 \left[1 - (2 - x)^2\right]^{\frac{1}{2}} m / s$$

2) $10 \left[1 - (2 - x)^2\right]^2 m / s$
3) $10 \left[1 - (2 - x)^2\right]^{\frac{3}{2}} m / s$
4) $10 \left[1 - (2 - x)^2\right] m / s$

Key : 1

Sol : In spring motion

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2.....(1)$$

 $v = v. \ i = 0, \ x_2 = (2 - x)mx_1 = (2 - 1)$
 $= 1m$

$$\frac{1m}{2m} = \frac{1}{2m} = \frac{1}{2m} = \frac{1}{2m} = \frac{1}{2} \frac{1}{2$$

- **33.** For a nucleus of mass number A and radius R, the mass density of nucleus can be represented as $\frac{2}{2}$
- 1) $A^{\overline{3}}$ 3) $A^{\overline{3}}$ **Key : 2 Sol :** As the density of nucleus is constant E is independent of A $e \propto A^{o}$

触 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions The amplitude and phase of a wave that is formed by the superposition of two 34. harmonic travelling waves, $y_1(x,t) = 4 \sin(kx - \omega t)$ and $y_2(x,t) = 2\sin(kx - \omega t + \frac{2\pi}{3})$ are : (Take the angular frequency of initial waves same as ω) 1) $\left[\sqrt{3}, \frac{\pi}{6}\right]$ 2) $\left[2\sqrt{3}, \frac{\pi}{6}\right]$ 3) $\left[6, \frac{2\pi}{3}\right]$ 4) $\left[6, \frac{\pi}{3}\right]$ Key: 2 **Sol:** $\begin{array}{l} y = y_1 + y_2 \\ = A_1 \sin(kx - \omega t) + A_2 \sin(kx - \omega t + \delta) \end{array}$ $A_2 = 2$ $A_{1} = 4$ $A = \sqrt{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\delta}$ & $\varepsilon = \tan^{-1} \left(\frac{A_2 \sin \delta}{A_1 + A_2 \cos \delta} \right)$ $A = \sqrt{4^2 + 2^2 + 2(4)(2)\cos\left(\frac{2\pi}{3}\right)}$ $=2\sqrt{3}$ $\& \quad \varepsilon = \tan^{-1} \left(\frac{2\sin\frac{2\pi}{3}}{4 + 2\cos\frac{2\pi}{3}} \right)$ $= \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6}$ A monatomic gas having $\gamma = \frac{5}{3}$ is stored in a thermally insulated container and the gas 35. is suddenly compressed to $\left(\frac{1}{8}\right)^{th}$ of its initial volume. The ratio of final pressure and initial pressure is (γ is the ratio of specific heats of the gas at constant pressure and at constant volume) 1) 16 2) 40 3) 28 4) 32 Key: 4 Sol:

📚 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$ $\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma}$ $= \left(\frac{V_1}{\frac{V_1}{2}}\right)^{\frac{5}{3}}$ = 32A body of mass 2 kg moving with velocity of $\vec{v}_{in} = 3\hat{i} + 4\hat{j} m s^{-1}$ enters into a 36. constant force field of 6N directed along positive z-axis. If the body remains in the filed for a period of $\frac{5}{2}$ seconds, then velocity of the body when it emerges from force field is. **1)** $3\hat{i} + 4\hat{j} + 5\hat{k}$ **2)** $3\hat{i} + 4\hat{j} + \sqrt{5}\hat{k}$ **3)** $4\hat{i} + 3\hat{j} + 5\hat{k}$ **4)** $3\hat{i} + 4\hat{j} - 5\hat{k}$ **Key: 1 Sol:** $V_z = a_z t = \frac{6}{2} \times \frac{5}{3} = 5 m s^{-1}$ $\vec{V}_{final} = 3\hat{i} + 4\hat{j} + 5\hat{k} ms^{-1}$ Electric charge is transferred to an irregular metallic disk as shown in fig. If 37. $\sigma_1, \sigma_2, \sigma_3$ and σ_4 are charge densities at given points then, choose the correct answer from the options given below: (A) $\sigma_1 > \sigma_3; \sigma_2 = \sigma_4$ (B) $(\sigma_1 > \sigma_2; \sigma_3 > \sigma_4)$ C) $\sigma_1 > \sigma_2 > \sigma_2 = \sigma_4$ (D) $\sigma_1 < \sigma_2 < \sigma_2 = \sigma_4$ (E) $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4$ 1) D & E only 2) A & C only **3)** A,B and C only 4) B and C only Key: 3 **Sol:** $\sigma \alpha \frac{1}{r}$ where r is local radius of curvature $\therefore \sigma_1 > \sigma_2 > \sigma_2 = \sigma_4$ (Since $r_1 < r_2 < r_2 = r_4$) **38.** A convex lens of focal length 30 cm is placed in contact with a concave lens of focal length 20cm. An object is placed at 20 cm to the left of this lens system. The distnace of the image from the lens in cm is Jee-Main-2025_Jan Session 19 | Page

🧶 Sri Chaitanya IIT Academy., India.	08-Apr-2025_Jee-Main_2025	_Shift-02_Q.Paper, Key and Solutions
1) 15 2) 30	3) $\frac{60}{7}$	4) 45
1) 15 2) 30 Key: 1 Sol: $\int_{f_1} f_2$ $\frac{1}{f_e} = \frac{1}{f_1} + \frac{1}{f_2}$ $= \frac{1}{30} + \frac{1}{(-20)}$ $= \frac{-1}{60}$ $f_e = -60 \ cm$ $\frac{1}{f_e} = \frac{1}{v} - \frac{1}{u}$ $\frac{1}{-60} = \frac{1}{v} - \frac{1}{-20}$ $\Rightarrow v = -15 \ cm$	3) 7	4) 45
39. A concave- convex lens of refr 30 cm and 20 cm, respective of refractive index 1.3. The 1 1) $\frac{500}{11}$ cm 2) $\frac{700}{11}$ cm	factive index 1.5 and the radially. The concave surface is focal length of the liquid $-\frac{3}{11}$ cm	dil of curvature of its surfaces are upward and is filled with a liquid glass combination will be 4) $\frac{600}{11}cm$
Key: 4	11	11
Sol: $ \frac{\mu_{l} = 1.3}{\mu_{g} = 1.5} $ $ \frac{1}{f_{e}} = \frac{1}{f_{1}} + \frac{1}{f_{2}} $ $ = (\mu_{l} - 1) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) + (\mu_{g} - 1) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) $ $ = (1.3 - 1) \left(\frac{1}{\infty} - \frac{1}{-30}\right) + (1.5 - 1) \left(\frac{1}{-30} - \frac{1}{10}\right) $ $ = \frac{11}{600} $ $ \therefore f_{e} = \frac{600}{11} cm $	$\frac{1}{R_2} \right) - \frac{1}{-20} \right)$	

📚 Sri Chaitanya IIT Academy., India.

40. Two metal speres of radius R and 3R have same surface charge density σ . If they are brought in contact and then separated, the surface charge density on smaller and bigger sphere becomes σ_1 and σ_2 respectively. The ratio $\frac{\sigma_1}{\sigma_2}$ is 2) $\frac{1}{9}$ 3) $\frac{1}{3}$ 1) 3 4) 9 **Kev: 1** Sol: Before contact $\sigma = \frac{Q_1}{4\pi R^2} = \frac{Q_2}{4\pi (3R)^2}$ $\Rightarrow Q_2 = 9Q_1$ After contact $V_1 = V_2$ $\frac{KQ_1'}{R} = \frac{KQ_2'}{3R} \Longrightarrow Q_2' = 3Q_1'$ $Q_{1}' = \left(\frac{R_{1}}{R_{1}+R_{2}}\right)(Q_{1}+Q_{2})$ $=\left(\frac{R}{R+3R}\right)(Q_1+9Q_1)$ $=\frac{5}{2}Q_{1}$ $Q_2' = 10Q_1 - \frac{5}{2}Q_1$ $=\frac{15}{2}Q_{1}$ $\frac{\sigma_1}{\sigma_2} = \frac{\frac{Q_1'}{4\pi R^2}}{\frac{Q_2'}{\frac{Q$ Two strings with circular cross section and made of same material, are stretched to have 41. same amount of tension. A transverse wave is then made to pass through both the strings, The velocity of the wave in the first having the radius of cross section R is V_1 , and that in the other string having the radius of cross section R/2 is V_2 , Then $\frac{V_2}{V_1}$ is **1**) $\sqrt{2}$ 3) 4 2) 2 4) 8 Key: 2 Sol: Jee-Main-2025_Jan Session 21 | Page

🧟 Sri (Chaitanya IIT Academy	., India. 08-A	pr-2025_Jee-Main_	2025_Shift-02_Q.Paper, Key an	d Solutions
	$v = \sqrt{\frac{T}{\rho A}} \Rightarrow v\alpha \frac{1}{\sqrt{A}}$	Ē			
	$\Rightarrow v\alpha \frac{1}{\sqrt{\pi R^2}} \Rightarrow v\alpha$	$\frac{1}{R}$			
	$\therefore \frac{v_2}{v_1} = \frac{R_1}{R_2} = \frac{R}{\left(\frac{R}{2}\right)} =$	2			
42.	Water falls from water assuming to	a height of 200 n no heat dissipatio	n into a pool. Cal n from the water	culate the rise in temperature in the pool.	e of the
	(Take $g = 10 m/s$	s ² , specific heat c	of water $= 4200 J$	/(kgK))	
	1) 0.48 K	2) 0.23 K	3) 0.14 K	4) 0.36 K	
KEY: SOL:	$mgh = ms\Delta T$				
	$\Delta T = \frac{10 m/s^2 \times 2}{4200 J/k_s}$	200 <i>m</i> g.K			
	$\Delta T = 0.48K$				
40		-2	$+\frac{3}{2}$ $-\frac{2}{5}$ V V	177 1 1 4	1 ' 1
43.	A quantity Q is I	formulated as x^{-1}	$y^2 z^3$. X, Y and	¹ Z are independent paramete	ers which
	have fractional e	rrors of $0.1, 0.2$ a	nd 0.5, respective	ely in measurement. The max	kimum
	fractional error c	of Q is	2) 0 9		
KEV.	1) 0.7	2) 0.6	3) 0.8	4) 0.1	
KEI:	3 2				
SOL:	$Q = x^{-2} y^{+\frac{1}{2}} z^{-\frac{1}{5}}$				
	$\Rightarrow \frac{\Delta Q}{Q} = 2\frac{\Delta x}{x} + \frac{2}{2}$	$\frac{3}{2}\frac{\Delta y}{y} + \frac{2}{5}\frac{\Delta z}{z}$			
	$\Rightarrow \frac{\Delta Q}{Q} = 2 \times 0.1 +$	$-\frac{3}{2} \times 0.2 + \frac{2}{5} \times 0.5$			
	$\Rightarrow \frac{\Delta Q}{Q} = 0.7$				
44.	Two balls with s way that maximu- ball. T_1 and T_2 is	ame mass and ini um height reacheo s	tial velocity, are 1 by first ball is 8	projected at different angle in times higher than that of the	n such a e second
K FY.	1) 2:1 2	2) $2\sqrt{2}$:1	3) 4:1	4) $\sqrt{2}$:1	
	£	$1 (T)^2$			
SOL:		$h = \frac{1}{2}g\left(\frac{1}{2}\right)$			
	$\frac{H_1}{H_2} = \left(\frac{T_1}{T_2}\right)^2$				
	$\Rightarrow \frac{T_1}{T_2} = (8)^{\frac{1}{2}}$				

٦

SECTION-II (NUMERICAL VALUE TYPE)

This section contains **5 Numerical Value Type Questions**. The Answer should be within **0 to 9999**. If the Answer is in **Decimal** then round off to the **Nearest Integer** value (Example i.e. If answer is above **10** and less than **10.5** round off is **10** and If answer is from **10.5** and less than **11** round off is **11**).

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

k=5	
k =	$3\cdot \frac{d}{2}$
k =	$\frac{3}{2}$

Space between the plates of a parallel plate area $4cm^2$ and separation of (d) 1.77 mm, is filled with uniform dielectric materials with dielectric constants (3 and 5) as shown in figure. Another capacitor of capacitance 7.5 pF is connected in parallel with it. The effective capacitance of this combination is _____pF.

(Given $\in_0 = 8.85 \times 10^{-12} F/m$)

Key: 15

Sol:

$$\frac{1}{C_1} = \frac{1}{\left(\frac{5 \in A}{d/2}\right)} + \frac{1}{\left(\frac{3 \in A}{d/2}\right)} = \frac{d}{10 \in A} + \frac{d}{6 \in A} = \frac{16d}{60 \in A}$$
$$C_1 = \frac{15}{4} \times \frac{8.85 \times 10^{-12} \times 4 \times 10^{-4}}{1.77 \times 10^{-3}} = 75 \times 10^{-13} = 7.5 \ pF$$
$$C_2 = 7.5 \ pF$$
$$C_{eff} = C_1 + C_2 = 15 \ pF$$

🧟 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions

47. A thin solid disk of 1 kg is rotating its diameter axis at the speed of 1800 rpm. By applying an external torque of $25\pi Nm$ for 40s, the speed increases to 2100 rpm. The diameter of the disk is _____m.

Key: 40

Sol:
$$\omega_2 - \omega_1 = \alpha t$$

 $(2100 - 1800) \frac{2\pi}{60} = \alpha \times 40$
 $\pi = 4\alpha \Rightarrow \alpha = \frac{\pi}{4}$
 $\tau = I\alpha$
 $25\pi = \frac{mR^2}{4}\alpha \Rightarrow 25\pi = \frac{(I)R^2}{4}\frac{\pi}{4}$
 $400 = R^2$
 $R = 20m$
 $D = 40m$

48. An electron is released from rest near an infinite non-conducting sheet of uniform charge density ' $-\sigma$ '. The rate of charge of de-Broglie wave length associated with the electron varies inversely as nth power of time. The numerical value of n is _____

Key: 2 Sol:

49. A sample of a liquid is kept at I atm. It is compressed to 5 atm which leads to change of volume of $0.8cm^3$. If the bulk modulus of the liquid is 2 GPa. The initial volume of the liquid was ______litre. (Take 1 atm = $10^5 Pa$)

Key: 4

Sol: $B = \frac{\Delta P}{-\Delta V}$ (8-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions)

$$\frac{\overline{V}}{2 \times 10^{9}} = \frac{(5-1) \times 10^{5}}{\left(\frac{0.8 \times 10^{-6}}{V}\right)}$$

$$\frac{2 \times 0.8 \times 10^{-2}}{4} = V$$

$$V = 0.4 \times 10^{-2} = 4 \times 10^{-3} m^3 = 4 ltr$$

50. A cube having a side of 10 cm with unknown mass and 200 gm mass were hung at two ends of an uniform rigid rod of 27 cm long. The rod along with masses was placed on a wedge keeping the distance between wedge point and 200 gm weight as 25 cm. Initially the masses were not at balance. A beaker is placed beneath the unknown mass and water is added slowly to it. At given point the masses were in balance and half volume of the unknown mass was inside the water. (Take the density of unknown mass is more than that of the water, the mass did not absorb water and water density is 1 gm/cm^3). The unknown mass is __kg

Key: 3 Sol:

🧟 Sri Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions CHEMISTRY Max Marks: 100 SECTION-I (SINGLE CORRECT ANSWER TYPE) This section contains 20 Multiple Choice Questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. Which of the following binary mixture does not show the behaviour of minimum boiling 51. azeotrope? 1) $CH_3OH + CHCl_3$ 2) $CS_2 + CH_3COCH_3$ 3) $C_6H_5OH + C_6H_5NH_2$ 4) $H_2O + CH_3COC_2H_5$ Key: 3 Sol : Phenol – Aniline system shows negative deviation from Raoult's law and hence is maximum boiling Azeotrope. The correct decreasing order only magnetic moment value 52. (BM) of Cu^+ , Cu^{2+} , Cr^{2+} and Cr^{3+} 1) $Cr^{3+} > Cr^{2+} > Cu^{+} > +Cu^{2+}$ 2) $Cu^{2+} > Cu^{+} > Cr^{2+} > Cr^{3+}$ 3) $Cr^{2+} > Cr^{3+} > Cu^{2+} > Cu^{+}$ 4) $Cu^{+} > Cu^{2+} > Cu^{3+} > Cr^{2+}$ Kev : 3 Sol: TOT CONFICUDATION NO OF INDADED

ION	CONFIGURATION	NO. OF UNPAIRED
		ELECTRONS (n)
Cu ⁺	d^{10}	0
Cu ⁺ 2	d ⁹	1
Cr ⁺²	d^4	4
Cr^{+3}	d ³	3

$$\mu_{s} = \sqrt{n(n+2)} BM$$

$$\therefore \mu_{s} of Cr^{+2} > Cr^{+3} > Cu^{+2} > Cu^{+3}$$

53. When undergoes intramolecular aldol condensation the major Product formed is :

33 | Page

65. In a first order decomposition reaction, the time taken for the decomposition of reactant to one fourth and one eight of its initial concentration are t_1 and $t_2(s)$, respectively. The ratio

$$t_1/t_2$$
 will be:
1) $\frac{4}{3}$ 2) $\frac{3}{2}$ 3) $\frac{3}{4}$ 4) $\frac{2}{3}$

Key: 4

Sol: For first order reaction half – life remain constant

$$t_{75\%} = 2t_{50\%}$$

$$t_{87.5\%} = 3t_{50\%}$$

$$\therefore t_1 = 2t_{50\%} \text{ and } t_2 = 3t_{50\%}$$

$$\frac{t_1}{t_2} = \frac{2}{3}$$

66. Given below are two statements:

Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereosiomerism

Statement II: *cis* – *and trans* – *platin* are heteroleptic complexes of Pd.

In the light of the above statements, choose the *correct* answer from the options given below:

1) Both Statement I and Statement II are false

2) Statement I is false but Statement II is true

3) Statement I is true but Statement II is false

4) Both Statement I and Statement II are true

Key: 3

Sol: Statement – I is true but

 $Statement-II \ is \ false$

cis- and trans-platin are heteroleptic complexes of Pt

🧟 Si	i Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions
67.	Correct statements for an element with atomic number 9 are:
	A) There can be 5 electrons for which $m_s = +\frac{1}{2}$ and 4 electrons for which $m_s = -\frac{1}{2}$
	B) There is only one electron in P_Z orbital.
	C) The last electron goes to orbital with $n = 2$ and $l = 1$
	D) The sum of angular nodes of all the atomic orbitals is 1.
	Choose the correct answer from the options given below:
17	1) C and D Only 2) A and B Only 3) A and C Only 4) A, C and D Only
Key	7:3
501	: The element with atomic number 9 is fluorine. Its electronic configuration is: $1s^2 2s^2 2n^5$
	Now let's evaluate each statement:
	. A. There can be 5 electrons for which $m_s = +\frac{1}{2}$ and 4 electrons for which $m_s = -\frac{1}{2}$.
	- Fluorine has 9 electrons.
	- In orbitals, electrons are filled with opposite spins.
	- So we can have 5 electrons with $+\frac{1}{2}$ spin and 4 with $-\frac{1}{2}$ spin.
	\rightarrow Correct
4	B. There is only one electron in P_z orbital.
	- In the 2p subshell (2p ²), there are 3 orbitals: p_x , p_y , and p_z . Electrons fill one in each orbital first, then pairing occurs
	- So only one orbital has only one electron: but not necessarily p-
	\rightarrow Not necessarily true (incorrect generalization)
3	. C. The last electron goes to orbital with $n = 2$ and $l = 1$.
	- Yes, the last electron goes to the 2p orbital.
	- For $2p$: $n = 2, l = 1$.
	\rightarrow Correct
	. D. The sum of angular nodes of all the atomic orbitals is 1.
	- Angular nodes – I (azimulnal quantum number). - 1s $(1 = 0) \rightarrow 0$ podes
	$-2s(1=0) \rightarrow 0$ nodes
	$-2p(l=1) \rightarrow each 2p$ orbital has 1 angular node
	- There are 3 orbitals in 2p, and 5 electrons occupy them.
	- Total angular nodes = number of orbitals $\times 1 = 3 \times 1 = 3$
	\rightarrow Incorrect
69	Final correct options: A and C only Given below are two statements:
00.	Statement I : H ₂ Se is more acidic than H ₂ Te
	Statement II : H_2Se has higher bond enthalpy for dissociation than H_2Te
	In the light of the above statements, choose the correct answer from the options given
	below:
	1) Statement I is false but Statement II is true
	2) Both Statement I and Statement II are false
	3) Both Statement I and Statement II are true 4) Statement L is true but Statement II is false
	4) Statement I is true out Statement II is faise
1	

🤶 Sri Chaitanya IIT Academy., India.

Key:1

Sol:

Statement I: H_2Se is more acidic than $H_2Te \rightarrow False$

Reason: Acidic strength increases down the group in chalcogens due to increasing atomic size and decreasing bond strength. So, H₂Te is more acidic than H₂Se.

Statement II: H₂Se has higher bond enthalpy for dissociation than H₂Te \rightarrow **True Reason:** Bond enthalpy decreases down the group. Se–H bond is stronger than Te–H bond.

Correct Answer: Option 1 (Statement I is false but Statement II is true)

🧙 Sri Chaitanya IIT Academy., India. 08-Apr-2	025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions		
69. Match the LIST-I with LIST-II			
LIST-I (Reagent)	LIST-II (Functional Group detected)		
A Sodium bicarbonate solution	I double bond/ unsaturation		
B Neutral ferric chloride	II carboxylic acid		
C ceric ammonium nitrate	III phenolic – OH		
D alkaline KMnO4	IV alcoholic - OH		
Choose the correct answer from the optic	ons given below:		
1) A-II, B-III, C-IV, D-I 2) A	-II. B-IV. C-III. D-I		
3) A-II, B-III, C-I, D-IV 4) A-	III, B-II, C-IV, D-I		
Kev: 1			
Sol: Matching List-I with List-II:			
A. Sodium bicarbonate solution \rightarrow Cat	boxylic acid (II)		
Reason: Carboxylic acids react with N	$aHCO_3$ to release CO_2 gas.		
B. Neutral ferric chloride \rightarrow Phenolic -	-OH (III)		
Reason: Gives colored complexes with	nhenols		
C Ceric ammonium nitrate \rightarrow Alcoho	lic -OH (IV)		
Reason: Reacts with alcohols causing of	color change		
D . Alkaline KMnO ₄ \rightarrow Double bond/u	nsaturation (I)		
Reason: Oxidizes alkenes (Baever's te	st)		
Correct Matching: A-II B-III C-IV	D_I		
Correct Answer: Ontion 1			
20 $H_{A}(aa) \rightarrow H^{+}(aa) + A^{-}(aa)$			
The function point demonstrate of $a = 0.1$	m aquaque solution of a monohogic weak acid UA is		
The freezing point depression of a 0.1 0.20° C. The dissociation constant for the	he agid is		
0.20° C. The dissociation constant for the			
Given: $K_f(H_2O) = 1.8K \ kgmol^2$, molality	y = molarity		
1) 1.89×10^{-1} 2) 1.90×10^{-3}	3) 1.38×10^{-3} 4) 1.1×10^{-2}		
Key : 3			
Sol : $\Delta T_f = i \times K_f \times m$			
$0.20 = 1 \times 1.8 \times 0.1$			
i = 0.20 / 0.18 = 1.11			
Since HA is a weak acid,			
$i = 1 + \alpha \Rightarrow \alpha = 0.11$			
$Ka = C\alpha^2 / (1-\alpha) = (0.11)^2 / 0.89 = 1$	1.36×10^{-3}		
This section contains 5 Numerical Value Type Questions . The Answer should be within 0 to 9999 . If the Answer is in Decimal then round off to the Nearest Integer value (Example i,e. If answer is above 10 and less than 10.5 round off is 10			
and It answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and	d -1 in all other cases.		
71. The equilibrium constant for decomposition $\frac{1}{1}$	sition of $H_2O_{(g)}$		
$H_2O(g) \rightleftharpoons H2(g) + \frac{1}{2}O2(g)(\Delta G \circ = 92.34 kJr)$	mol^{-1}) is 8.0×10^{-3} at 2300K and total pressure at		
equilibrium is 1bar. Under this condition $\times 10^{-2}$ (nearest integer value)	on, the degree of dissociation (α) of water is		
[Assume α is negligible with respect to	1]		
Jee-Main-2025_Jan Session	38 Page		

🧟 Sri	Chaitanya IIT Academy., India. 08-Apr-2025_Jee-Main_2025_Shift-02_Q.Paper, Key and Solutions
Key	: 5
Sol:	$P_{H2O} \approx 1, \alpha \ll 1$
	$K = \alpha \times (\alpha/2)^{1/2} = \alpha^{3/2} \times (1/2)^{1/2}$
	$\Rightarrow \alpha^{3/2} = 8 \times 10^{-3} \times \sqrt{2}$
	$\alpha = 5.04 \times 10^{-2}$
72.	20mL of sodium iodide solution gave 4.74g silver iodide when treated with excess of
	silver nitrate solution. The molarity of the sodium iodide solution isM. (Nearest
	Integer value) (Given : Na = 23 I = 127 A g = 108 N = 14 O = 16 gmol ⁻¹)
Kev	(01) (1)
Sol:	• •
	Given:
	- Molar mass of $AgI = 108 + 127 = 235 \text{ g/mol}$
	- Moles of $AgI = 4.74 / 235 = 0.02017$
	- Volume = 20 mL = 0.020 L
	Molarity = $0.02017 / 0.020 = 1.0085 \Rightarrow 1 \text{ M}$
73	Answer: 1 M Consider the following half cell reaction
/3.	$Cr O^{2^{-}}(aa) + 6e^{-} + 14H^{+}(aa) \rightarrow 2Cr^{3^{+}}(aa) + 7H O(l)$
	$\left[\alpha^{3} - 1 \right]^{2}$
	The reaction was conducted with the ratio of $\frac{\lfloor Cr^2 \rfloor}{\lfloor cr^2 \rceil} = 10^{-6}$
	$\lfloor Cr_2O_7^{2-} \rfloor$
	The pH value at which the EMF of the half cell will become zero is (nearest
	integer value) 2 303 <i>Rt</i>
	[Given : standard half cell reduction potential $E^{O}_{Cr_2 O_7^{2+}, H^+/Cr^{3+}} = 1.33V, \frac{2.505M}{F} = 0.059V$]
Key	: 10
	$\begin{bmatrix} 34 \end{bmatrix}^2$
	$F - F^{O} = \frac{0.059}{\log \left[\frac{Cr^{S}}{2} \right]}$
	$\frac{1}{n} \frac{1}{\left[\frac{1}{n} - \frac{1}{n}\right]^{14}}$
	$\begin{bmatrix} cr_2 o_7^- \end{bmatrix} \begin{bmatrix} H^- \end{bmatrix}$
	$\begin{bmatrix} & & \\ & & & \\ & & & \end{bmatrix}$
	$E = o = 1.33 - \frac{0.059}{1000} \log \frac{[CV]}{1000000000000000000000000000000000000$
	$6 \left[\frac{cr_2 o_7^{2-1} cr_2 o_7^{2-1} cr_2 o_7^{-1} cr_2 o_7^{-1} cr_2 cr_2 o_7^{-1} cr_2 cr_2 cr_2 cr_2 cr_2 cr_2 cr_2 cr_2$
Sol:	$1.33 = \frac{0.06}{\log 10^{-6} - 14 \log^{\lfloor H + \rfloor}}$
	6
	$1 33 - \frac{0.06}{-6 + 14P}H$
	$1.55 = \frac{-6}{6} \begin{bmatrix} -0 + 1 + 1 \\ -0 \end{bmatrix}$
	After calculating we get $P^H = 10$
74.	The energy of an electron in the first Bohr orbit of H-atom is -13.6 eV. The magnitude of
	energy value of electron in the first excited state of Be ³⁺ iseV (nearest integer
	value).
Key	: 54

Sol: $\Delta H_{IE} = -E_n = -E_0 \frac{Z^2}{n^2}$ $= -(-13.6) \left[\frac{4^2}{2^2} \right] n = 2, z = 4$ $\Delta H_{IE} = 13.6.\frac{16}{4}$ $\Delta H_{IE} = 54.4ev$ Ans = 5475. Resonance in X2Y can be represented as: $\stackrel{\odot}{::} \stackrel{\odot}{:} \stackrel{\circ}{:} \stackrel$

The magnitude of resonance energy of X_2Y is _____kJ mol⁻¹ (nearest integer value). Given : Bond energies of X=X, X=X, Y=Y and X=Y are 940,410,500 and 602kJmol⁻¹ respectively.

valence X:3,Y:2

Sol:
$$x \equiv x + \frac{1}{2}y_2 \rightarrow x_2 \quad \Delta h = 80 \frac{kj}{mol}$$

 $\left(\varepsilon_{x \equiv x} + \frac{1}{2}\varepsilon y_2\right) - \left(\varepsilon_{x = x} + \varepsilon_{x = y}\right)$
Therotical $\Delta h = \left(940 + \frac{500}{2}\right) - (410 + 602)$
 $= (940 + 250) - (1012)$
 $\Delta h = 1190 - 1012 = 178kj$
Resonence energy = Theoretical $\Delta h - practical \Delta h$
 $= 178 - 80$
Resonence = $98 \frac{kj}{mol}$
 $= 98$