

SRI CHAITANYA NATION'S 1STCHOICE FOR **IIT-JEE SUCCESS**

5 STUDENTS IN TOP 10 IN JEE-ADVANCED 2024 OPEN CATEGORY

97

RANK

RANK

00

RANK

 \mathbf{O}

RANK

Transforming Your Dreams Into Reality

🕒 040 660 60606 | www.srichaitanya.net

NUMBER OF QUALIFIED

RANKS

🎇 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

Sri Chaitanya IIT Academy., India.

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

JEE-ADVANCED-2025-P1-Model

Time:3Hr's

IMPORTANT INSTRUCTIONS

Max Marks: 180

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 4)	Questions with Single Correct Choice	+3	-1	4	12
Sec – II(Q.N : 5 – 7)	Questions with Multiple Correct Choice with partial mark	+4	-2	3	12
Sec – III(Q.N : 8 – 13)	Questions with NUMERICAL VALUE Type	+4	0	6	24
Sec – IV(Q.N : 14 – 16)	Matching Type	+4	-1	3	12
	Total	C		16	60

PHYSICS:

Section	Question Type	Question Type +Ve - Ve Marks Marks		No.of Qs	Total marks
Sec – I(Q.N : 17 – 20)	Questions with Single Correct + Choice +		-1	4	12
Sec – II(Q.N : 21 – 23)	Questions with Multiple Correct Choice with partial mark		-2	3	12
Sec – III(Q.N : 24 – 29)	Questions with NUMERICAL VALUE Type	+4	0	6	24
Sec – IV(Q.N : 30 – 32)	Matching Type	+4	-1	3	12
	Total		3/15	16	60

CHEMISTRY:

Section	Question Type +Ve - Ve Marks Marks		No.of Qs	Total marks	
Sec – I(Q.N : 33 – 36)	Questions with Single Correct Choice	+3	-1	4	12
Sec – II(Q.N : 37 – 39)	Questions with Multiple Correct Choice with partial mark+4-2		3	12	
Sec – III(Q.N : 40 – 45)	45) Questions with NUMERICAL VALUE Type		0	6	24
Sec – IV(Q.N : 46 – 48)	Matching Type	+4	-1	3	12
		16	60		

Page | 1

Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

3. Let \mathbb{R} denote the set of all real numbers. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 2 & \text{if } x = 0 \end{cases}$$

Then which one of the following statements is **TRUE**?

A) The function f is NOT differentiable at x=0

B) There is a positive real number δ , such that f is a decreasing function on the interval $(0,\delta)$

C) For any positive real number δ , the function f is NOT an increasing

function on the interval $(-\delta, 0,)$

D) x=0 is a point of local minima of f

KEY:- B

SOL:-
$$f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right) &, x \neq 0 \\ 2 &, x = 0 \end{cases}$$

Here, f(x) is continuous at x=0 and f(x) is differentiable at x=0.

$$f^{\dagger}(x) = -4x - 2x\sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right) = -2x\left(2 + \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right)\right) \text{ and}$$
$$lt_{h \to 0^{+}} f(h) = lt_{h \to 0^{+}} \left(2 - 2h^{2} - h^{2}\sin\left(\frac{1}{h}\right)\right)$$
$$= lt_{h \to 0^{+}} \left(2 - h^{2} - h^{2}\left(1 + \sin\left(\frac{1}{h}\right)\right)\right) = 2^{-1}$$

 \Rightarrow So, f(x) is decreasing from 0 to some positive $x = \delta$.

🐯 Sri Chaitanya IIT Academy

4. Consider the matrix

$$P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Let the transpose of a matrix X be denoted by X^T . Then the number of 3×3 invertible matrices Q with integer entries, such that

$$Q^{-1} = Q^T$$
 and $PQ = QP$, is
A) 32 B) 8 C) 16 D) 24

KEY:- C

$$SOL:- P = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \text{Let } Q = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2a_2 & 2a_2 & 2a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{bmatrix} = \begin{bmatrix} 2a_1 & 2a_2 & 3a_3 \\ 2b_1 & 2b_2 & 3b_3 \\ 2c_1 & 2c_2 & 3c_3 \end{bmatrix} \Rightarrow a_3 = 0, b_3 = 0, c_1 = 0 \text{ and } c_2 = 0$$
$$\Rightarrow Q = \begin{bmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ 0 & 0 & c_3 \end{bmatrix}, Q^{-1} = Q^T \Rightarrow QQ^T = I \text{ (I denotes Identity matrix)}$$
$$\Rightarrow a_1^2 + a_2^2 = 1, b_1^2 + b_2^2 = 1, a_1b_1 + a_2b_2 = 0 \text{ and } c_3^2 = 1 \Rightarrow c_3 = \pm 1 \text{ and}$$
$$a^2 = 1, b^2 = 0 \text{ and } c^2 = 0, d^2 = 1 \Rightarrow 4 \text{ (or) } a^2 = 0, b^2 = 1 \text{ and } c^2 = 1, d^2 = 0 \Rightarrow 4$$
Total Q's = 2×(4+4)=16

Sri Chaitanya IIT Academy 18-05-2025_JEE-Advanced-2025-P1-QP & Sol's **SECTION – II** (ONE OR MORE CORRECT ANSWER TYPE) This section contains THERE (03) questions. • Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s). • For each question, choose the option(s) corresponding to (all) the correct answer(s). • Answer to each question will be evaluated according to the following marking scheme : Full Marks :+4 ONLY if (all) the correct option(s) is(are) chosen; Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct ;

Partial Marks: +1 If two or more options are correct but ONLY two options are chosen, and it is a correct option ;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks; choosing ONLY (A) and (B) will get +1 mark; choosing ONLY (B) and (D) will get +2 marks; choosing ONLY (A) will get +1 mark; choosing ONLY (B) will get +1 mark; choosing on option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks.

Let L_1 be the line of intersection of the planes given by the equations 5.

2x+3y+z=4 and x+2y+z=5.

Let L_2 be the line passing through the point P(2,-1,3) and parallel to L_1 . Let M

denote the plane given by the equation

$$2x + y - 2z = 6$$

Suppose that the line L_2 meets the plane M at the point Q. Let R be the foot of the

perpendicular drawn from P to the plane M.

Then which of the following statements is (are) **TRUE**?

A) The length of the line segment PQ is $9\sqrt{3}$

B) The length of the line segment QR is 15

C) The area of $\triangle PQR$ is $\frac{3}{2}\sqrt{234}$

D) The acute angle between the line segments PQ and PR is $\cos^{-1}\left|\frac{1}{2\sqrt{2}}\right|$

KEY:- AC

SOL:- A vector along L_1 is parallel to $\overline{n_1} \times \overline{n_2}$ where $\overline{n_1} = 2i + 3j + k$, $\overline{n_2} = i + 2j + k$

$$\therefore \overline{n_1} \times \overline{n_2} = \begin{vmatrix} i & j & k \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = i(1) - j(1) + k(1)$$

and L_2 passes through P(2,-1,3) and parallel to L_1

👺 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

🗱 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

tutions

6. Let \mathbb{N} denote the set of all natural numbers, and \mathbb{Z} denote the set of all integers.

Consider the functions $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{N}$ defined by

$$\left(\frac{1}{3},\frac{8}{3}\right)$$

and

$$g(n) = \begin{cases} 3+2n & \text{if} \quad n \ge 0\\ -2n & \text{if} \quad n < 0 \end{cases}$$

Define (gof)(n) = g(f(n)) for all $n \in \mathbb{N}$, and (fog)(n) = f(g(n)) for all $n \in \mathbb{Z}$.

Then which of the following statements is (are) **TRUE**?

A) $g \circ f$ is NOT one-one and $g \circ f$ is NOT onto

B) $f \circ g$ is NOT one-one but $f \circ g$ is onto

- C) g is one-one and g is onto
- **D**) f is NOT one-one but f is onto

KEY:- AD

SOL:-
$$f(n) = \begin{cases} \frac{n+1}{2} &, n=2K+1 \\ \frac{4-n}{2} &, n=2K \end{cases} = \begin{cases} K+1 &, K \in N \cup \{0\} \\ 2-K &, K \in N \end{cases}$$

 $\therefore f(1) = f(2) = 1 \Rightarrow f \text{ is not one-one.}$
and $2-K = 1, 0, -1, -4, \dots$ for $K = 1, 2, 3, \dots$ and
 $K+1 = 1, 2, 3, 4, \dots$ for $K = 0, 1, 2, \dots \Rightarrow f(x)$ is onto
 $g(n) = \begin{cases} 3+2n &, n \ge 0 \\ -2n &, n < 0 \\ , n \in I \end{cases}$
 $\Rightarrow 3+2n = 3, 5, 7, \dots$ for $n \ge 0, x \in I$ and
 $-2n = 2, 4, 6, 8, \dots$ for $n < 0$ and $x \in I$

7.

 $\therefore g(n) \neq 1 \forall n \in I$ $\Rightarrow g(n)$ is not onto g(f(1)) = g(1) and g(f(2)) = g(1) $\Rightarrow g(f(n))$ is not one-one $g(f(n)) = \begin{cases} 3+2f(n) & , & f(n) \ge 0 \\ -2f(n) & , & f(n) < 0 \end{cases}$ $= \begin{cases} 3+2\left(\frac{n+1}{2}\right) &, n=2K+1\\ 3+2\left(\frac{4-n}{2}\right) &, n=2K \end{cases}$ $=\begin{cases} n+4 & , \quad n=2K+1\\ 7-n & , \quad n=2K \end{cases} \implies g(f(n)) \text{ is always odd.}$ $\Rightarrow g(f(n))$ is not onto $f(g(n)) = \begin{cases} \frac{g(n)+1}{2} &, g(n) \text{ is odd natural number} \\ \frac{4-g(n)}{2} &, g(n) \text{ is even natural number} \end{cases}$ $=\begin{cases} n+2 & , n \ge 0 \\ n+2 & , n < 0 \end{cases} \Rightarrow f(g(x)) = n + 2 \forall n \in N \Rightarrow f(g(x)) \text{ is one-one} \end{cases}$ Let \mathbb{R} denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + iy - z_1| = 2|x + iy - z_2|\}.$ Then which of the following statements is (are) **TRUE**?

灪 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

nal Institutions

We need 4 elements but R is also symmetric.

We want to pair (α,β) and (γ,δ) such that $(\alpha,\beta) \in R$ and $(\gamma,\delta) \in R \Rightarrow (\beta,\alpha) \in R$ and $(\delta,\gamma) \in R$.

 \therefore Total unordered pairs ${}^{6}C_{2} = 15$

Out of these 15, need two pairs $\Rightarrow \delta = {}^{15}C_2 = 105$

9. For any two points M and N in the XY-plane, let \overrightarrow{MN} denote the vector from M to N, and $\overrightarrow{0}$ denote the zero vector. Let P,Q and R be three distinct points in the XY-plane. Let S be a point inside the triangle ΔPQR such that

$$\overrightarrow{SP} + 5\overrightarrow{SQ} + 6\overrightarrow{SR} = \overrightarrow{0}$$

is

Let E and F be the mid-points of the sides PR and QR, respectively. Then the value of

length of the line segment EFlength of the line segment ES

R(r

S(0)

KEY:- 1.2

SOL:-

 $\overrightarrow{SP} + 5\overrightarrow{SQ} + 6\overrightarrow{SR} = \overrightarrow{0}$

Take S as origin $\Rightarrow \overline{p} + 5\overline{q} + 6\overline{r} = \overline{0}$

🐯 Sri Chaitanya IIT Academy

🀯 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

Limit takes
$$\begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 form

$$\Rightarrow \lim_{x \to 0} \frac{\frac{\alpha}{2} \left[\frac{1}{1-x^2} \right] + \beta \cos x - \beta x \sin x}{3x^2} = 2$$

$$\lim_{x \to 0} \frac{\frac{\alpha}{2} \left[1+x^2+x^4+\dots \right] + \beta \left[1-\frac{x^2}{12} + \frac{x^4}{14} + \dots \right] - \beta x \left[x-\frac{x^3}{13} + \dots \right]}{3x^2} = 2$$

$$\Rightarrow \frac{\alpha}{2} + \beta = 0, \text{ and } \frac{\alpha}{2} - \frac{\beta}{2} - \beta = 6$$

$$\Rightarrow \alpha + 2\beta = 0 \text{ and } \alpha - 3\beta = 12$$

$$\Rightarrow \alpha = \frac{24}{5}, \beta = \frac{-12}{5} \qquad \Rightarrow \alpha + \beta = \frac{12}{5} = 2.4$$
12. Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $f(x) > 0$
for all $x \in \mathbb{R}$, and $f(x+y) = f(x) f(y)$ for all $x, y \in \mathbb{R}$.

Let the real numbers a_1, a_2, \dots, a_{50} be in an arithmetic progression. If

$$f(a_{31}) = 64f(a_{25})$$
, and $\sum_{i=1}^{50} f(a_i) = 3(2^{25}+1)$, then the value of $\sum_{i=6}^{30} f(a_i)$ is

SOL:-
$$f(x) > 0$$
 and $f(x + y) = f(x)f(y) \forall x, y$
 $\Rightarrow f(x) = a^{x}(a > 0)$
 $a_{1}, a_{2}, \dots, a_{50}$ are in A.P and $f(a_{31}) = 64f(a_{25})$
 $\Rightarrow a^{a_{1}+30d} = 64a^{a_{1}+24d}$
 $\Rightarrow a^{d} = 2$ and $\sum_{i=1}^{50} f(a_{i}) = 3(2^{25} + 1)$

SritChaltanya ITT Academy

$$\Rightarrow a^{a_1} + a^{a_1+d} + a^{a_1+2d} + \dots + a^{a_1+49d} = 3(2^{25} + 1)$$

$$\Rightarrow a^{a_1} (1 + 2 + 2^2 + \dots + 2^{49}) = a^{a_1} (2^{50} - 1) = 3(2^{25} + 1)$$

$$\Rightarrow a^{a_1} = \frac{3}{2^{25} - 1}$$

$$\sum_{i=6}^{30} f(a_i) = a^{a_1+5d} + a^{a_1+6d} + \dots + a^{a_1+29d}$$

$$= a^{a_1} \cdot 2^5 (1 + 2 + 2^2 + \dots + 2^{24})$$

$$= \frac{3}{2^{25} - 1} \cdot 2^5 (\frac{2^{25} - 1}{2 - 1}) = 3 \times 32 = 96$$
13. For all $x > 0$, let $y_1(x), y_2(x), y_3(x)$ and be the functions satisfying

$$\frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5,$$

$$\frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3},$$

$$\frac{dy_3}{dx} - (\frac{2 - x^3}{x^3}) y_3 = 0, \quad y_3(1) = \frac{3}{5e},$$
respectively. Then

$$\lim_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x} \sin x}$$
is equal to
KEV:-2
SOL:- $\frac{dy_1}{dx} - \sin^2 x y_1 = 0$

🎇 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

🐯 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

SECTION – IV (MATCHING TYPE)

This section contains THERE (03) Matching List Sets.

• Each set has **ONE** Multiple Choice Question.

• Each set has TWO lists :List-I and List-II.

• List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).

• FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.

• Answer to each question will be evaluated <u>according to the following marking scheme</u>: *Full Marks*:+3 **ONLY** if the option corresponding to the correct combination is chosen; *Zero Marks*: 0 If none of the options is chosen (i.e. the question is unanswered); *Negative Marks*: -1 In all other cases.

14. Consider the following frequency distribution:

Value	4	5	8	9	6	12	11
Frequency	5	f_1	f_2	2	1	1	3

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.

For the given frequency distribution, let α denote the mean deviation about the mean, β

denote the mean deviation about the median, and σ^2 denote the variance.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

	List – I			List – II		
011	P)	$7f_1 + 9f_2$ is equal to)	1)	146	
20	Q)	19 α is equal to		2)	47	
G	R)	19 β is equal to		3)	48	
101	S)	$19\sigma^2$ is equal to		4)	145	
		Julya Ed		5)	55	
A) $P \rightarrow (\overline{5})$	5)	$Q \rightarrow (3)$	R -	→ (2)	$S \rightarrow (4)$	
B) $P \rightarrow (5)$	5)	$\mathbf{Q} \rightarrow (2)$	R	\rightarrow (3)	$\mathbf{S} \rightarrow (1)$	
C) $P \rightarrow (5)$	5)	$\mathbf{Q} \rightarrow (3)$	R -	→ (2)	$\mathbf{S} \rightarrow (1)$	
D) $P \rightarrow (3)$	3)	$\mathbf{Q} \rightarrow (2)$	R -	\rightarrow (5)	$S \rightarrow (4)$	

KEY:- C

🗟 Sri Chaitanya IIT	Academy	18-05-2025_JEE-Adv	anced-2025-P1-QP & Sol's
SOL:- <i>x</i> _{<i>i</i>}	f_i	$c \cdot f_i$	$f_i x_i$
4	5	5	20
5	f_1	$5 + f_1$	$5f_i = 20$
6	1	$6 + f_1$	6
8	f_2	$6 + f_1 + f_2$	$8f_2 = 24$
9	2	$8 + f_1 + f_2$	18
11	3	$11 + f_1 + f_2$	33
12	1	$12 + f_1 + f_2$	12
	$N = 12 + f_1 + f_2$	124	133
$12 + f_1 + f_2$ $6 + f_1 = 10$ $7f_1 + 9f_2 =$ Mean, $\overline{x} = -$ Mean deviat Mean deviat $\Sigma f_1 x_1 - x_2$	$f_{1} = 19 \Rightarrow f_{1} + f_{2} = 7$ $\Rightarrow f_{1} = 4 \Rightarrow f_{2} = 3$ $f_{2} = 55 \qquad (P \rightarrow 5)$ $\frac{2f_{i}x_{i}}{\Sigma f_{i}} = \frac{133}{19} = 7$ ion about mean $(\alpha) = \frac{\Sigma f_{i}}{19}$ ion about median, $-M = 49$	$\frac{\left x_{i} - \overline{x}\right }{\Sigma f_{i}} = \frac{48}{19} \Rightarrow 19\alpha = 48$	$(Q \rightarrow 3)$
$\beta = \frac{3117}{\Sigma f_i}$ Variance, σ $19\sigma^2 = 146$	$\frac{1}{19} \Rightarrow 19\beta = 47 (1)$ $2 = \frac{\Sigma f_i x_i^2}{\Sigma f_i} - (\bar{x})^2 = \frac{146}{19}$ $(S \to 1)$	$R \rightarrow 2$) Acational Inst VDIA	tutions
Sri Chaitanya	Dominates	31 Students Below	Page 17
JEE M 202	AIN 25		

F

1

100 **98**

BELDW 4 57.9

BELOW 4 31 BELOW 95

BELOW 10

TOSHRIMAA SHINEN She she yakeesti zati

EAC

TOTAL QUALIFIED RANKS 22,094

🔡 Sri Cł	naitanya IIT Academy 18-05-2025_JEE-Advanced-2025-P1	-QP	& Sol's
15. I	Let \mathbb{R} denote the set of all real numbers. For a real number x, let [x] denote	e the	greates
i	nteger less than or equal to x . Let n denote a natural number.		
N	Match each entry in List-I to the correct entry in List-II and choose the corre	ct op	tion.
	List – I	Li	st – II
	The minimum value of n for which the function		
P)	$f(x) = \left[\frac{10x^3 - 45x^2 + 60x + 35}{n}\right]$ is continuous on the interval [1, 2] is	1)	8
Q)	The minimum value of <i>n</i> for which $g(x) = (2n^2 - 13n - 15)(x^3 + 3x)$, $x \in \mathbb{R}$ is an increasing function on \mathbb{R} is	2)	9
	The smallest natural number <i>n</i> which is greater than 5 such that $x = 3$ is		
R)	a point of local minima of $h(x) = (x^2 - 9)^n (x^2 + 2x + 3)$, is	3)	5
S)	Number of $x_0 \in \mathbb{R}$ such that $l(x) = \sum_{k=0}^{4} \left(\sin x-k + \cos x-k+\frac{1}{2} \right)$, $x \in \mathbb{R}$, is NOT differentiable at x_0 , is	4)	6
_		5)	10
A E C I KEY:-	A) $P \rightarrow (1)$ $Q \rightarrow (3)$ $R \rightarrow (2)$ $S \rightarrow (5)$ B) $P \rightarrow (2)$ $Q \rightarrow (1)$ $R \rightarrow (4)$ $S \rightarrow (3)$ C) $P \rightarrow (5)$ $Q \rightarrow (1)$ $R \rightarrow (4)$ $S \rightarrow (3)$ D) $P \rightarrow (2)$ $Q \rightarrow (3)$ $R \rightarrow (1)$ $S \rightarrow (5)$ B		
SOL:-	P) Let $K(x) = 10x^3 - 45x^2 + 60x + 35$ $K^{\dagger}(x) = 30x^2 - 90x + 60 = 30(x^2 - 90x + 60) = 30(x^2 - 90x + 70) =$	x-1	(x-2)
=	$\Rightarrow K(x) \text{ is } \downarrow \text{ in}[1, 2] \Rightarrow f(1) = \left[\frac{K(1)}{n}\right] = \left[\frac{60}{n}\right], f(2) = \left[\frac{55}{n}\right]$	o ()	
D	ut, $f(x)$ is continuous in $[1,2] \rightarrow [f(x)]$ is same integer for an $x \in [1,2] \rightarrow n =$	9.(1	$\rightarrow 2)$
Q	$g'(x) = (2n^2 - 13n - 15)(3x^2 + 3) = (2n - 15)(n + 1)(3x^2 + 3) > 0 \text{ for } g(x)$	$(x) \uparrow =$	⇒mix of
R	h (x) = $(x^2 - 9)^n (x^2 + 2x + 3)$ $h(3) = 0$ for $n > 5$ at $n = 6, (3 + \delta)^2$	>h(3)	B) (δ is
a	small positive real number) $\Rightarrow h(x)$ has local minimum at x = 3 for n = 6 ($R \rightarrow$	4)
S	$\ell(x) = \sin x + \cos x + \frac{1}{2} + \sin x - 1 + \cos x - \frac{1}{2} + \dots + \sin x - 4 + \sin x - $	s x -	$\frac{7}{2}$

🏽 Sr	i Chaita	nya IIT	Academy	18-	05-2025_J	EE-Advanced-2025-P1-Q	P & Sol's
	as sir	x-K	is non-differe	ntiable at $x = K$ b	ut, $\cos x $	$-\lambda$ is differentiable at	$x = \lambda$
	$\Rightarrow g$	(x) is n	on-differential	ble at $x_0 = 0, 1, 2, 3, 4$	4 (5 point	(s) $(S \rightarrow 3)$	
16.	Let w	$\hat{v} = \hat{i} + \hat{j}$	$\vec{j} - 2\hat{k}$, and \vec{u} a	and \vec{v} be two vector	rs, such th	hat $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w}$	$= \vec{u}$. Let
	α,β,	γ and η	t be real number	ers such that			
	$\vec{u} = c$	$\hat{i} + \beta \hat{j}$	$+\gamma\hat{k}, -t\alpha+\beta$	$\beta + \gamma = 0, \ \alpha - t\beta + \gamma$	$\gamma = 0$ and	$1 \ \alpha + \beta - t\gamma = 0.$	
	Mato	ch each	entry in List-I	to the correct entry	in List-II	and choose the correct	option.
			List	t – I		List – II	
		P)	$\left \vec{v} \right ^2$ is equal t	0	1)	0	
		Q)	If $\alpha = \sqrt{3}$, t	hen γ^2 is equal to	2)	1	
		R)	If $\alpha = \sqrt{3}$, (4)	$(\beta + \gamma)^2$ is equal to	3)	2	
		S)	If $\alpha = \sqrt{2}$, the	en $t+3$ is equal to	4)	3	
				D (4) D	5)	5	
	A) P P) D	\rightarrow (2)	$\mathbf{Q} \rightarrow (1)$	$R \rightarrow (4)$ S – $P \rightarrow (2)$ S	\rightarrow (5) \rightarrow (5)		
	D) F C) P	\rightarrow (2) \rightarrow (2)	$Q \rightarrow (4)$ $Q \rightarrow (1)$	$ \begin{array}{c} \mathbf{R} \rightarrow (3) & \mathbf{S} - \\ \mathbf{R} \rightarrow (4) & \mathbf{S} - \end{array} $	\rightarrow (3) \rightarrow (3)		
	D) P	\rightarrow (5)	$0 \rightarrow (4)$	$R \rightarrow (1)$ S – $R \rightarrow (1)$ S –	\rightarrow (3)		
KEY	Z:- A						
SOL	$a = \overline{u} \times$	$\overline{v} = \overline{w}ar$	$nd \overline{v} \times \overline{w} = \overline{u} \qquad \overline{v}$	v is perpendicular to	both \overline{u} &	\overline{v} and \overline{w} is perpendicu	lar to both
	$\frac{-}{u}$ and	$d\bar{v}$	$\Rightarrow \overline{u}, \overline{v} \text{ and } \overline{w}$	are 3 mutually perpe	endicular	meets.	
	$\left(\overline{v}\times\right)$	$\overline{w}) \times \overline{v} =$	$\overline{w} = \left \overline{v} \right ^2 \overline{w} - \left(\overline{w} \right)^2 \overline{w} = \left \overline{v} \right ^2 \overline{w} - \left(\overline{w} \right)^2 \overline{w} = \left \overline{w} \right ^2 \overline{w} + \left \overline{w} \right ^2 \overline{w} = \left \overline{w} \right ^2 \overline{w} + \left \overline{w} \right ^2 \overline{w}$	$(\overline{v},\overline{v})\overline{v} \Rightarrow (\overline{v} ^2 - 1)\overline{w}$	$-(\overline{v}.\overline{w})\overline{v}$	= 0	
	$\Rightarrow \overline{v} $	=1 and	$\overline{v.w} = 0$ and \overline{v}	$\overline{v} = \overline{u} \overline{v} \Rightarrow \overline{u} = \sqrt{6}$	$\overline{u}.\overline{w} = 0 \Longrightarrow$	$a + \beta - 2r = 0.$ and	
	$-t\alpha$	$+\beta +\gamma$	$=0, \alpha = t\beta + \gamma$	$=0, \ \alpha + \beta - t\gamma = 0$	$\Rightarrow (1+t)$	$\alpha = (1+t)\beta = (1+t)\gamma$	$\Rightarrow t = -1$
	(a) <i>c</i>	$\alpha = \beta =$	$\gamma \qquad \therefore \overline{u} = \gamma$	$\sqrt{6} = \sqrt{3\alpha^2} \Rightarrow \alpha = \sqrt{3\alpha^2}$	$\sqrt{2} \Longrightarrow t = 2$	2 if $\alpha = \sqrt{3} \Rightarrow \overline{u}$ is a no	on-zero
	vecto	or.	a di	Vo		TEUR	
			-1	G Ethicati	ME		
	$\Rightarrow \alpha$	$a^2 + \beta^2$	$+\gamma^2 \neq 0 \Longrightarrow \begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0 \Longrightarrow t =$	$-1(\alpha)^{2}$	for $t = -1 \Longrightarrow \alpha + \beta + \gamma =$	=0 for $t=2$
	$\Rightarrow \alpha$	$x = \beta = x$	γ if $\alpha = \beta$	$\beta = \gamma \Longrightarrow \alpha^2 = 2 \Longrightarrow \alpha$	$\neq \sqrt{3}$	if $\alpha = \sqrt{3} \Longrightarrow \alpha + \beta + \beta$	$\gamma = 0$ and
	α +	$\beta + \gamma =$	$0 \Rightarrow \gamma = 0$ and	$\beta = \sqrt{3} \qquad \therefore P \to 2$	$2, Q \rightarrow 1, I$	$R \to Q, S \to 5$	
							Page 19
				31.9	Students	Below 100 AIR	- "60 19
				010	a course a contro		

shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. (V) in the loop as a function of time:

100 < 98

1000 < 579

BELOW ◀ 10

31

100

500 < 95

TOTAL QUALIFIED RANKS 22,094

A) If $v_0 = 1.5KL$, the loop will stop before it enters completely inside the region of magnetic field.

B) When the complete loop is inside the region of magnetic field, the net force acting on the loop is zero.

C) If
$$v_0 = \frac{KL}{10}$$
, the loop comes to rest at $t = \left(\frac{1}{k}\right) \ln\left(\frac{5}{2}\right)$.

D) If $v_0 = 3KL$, the complete loop enters the region of magnetic field at time

$$t = \left(\frac{1}{k}\right) \ln\left(\frac{3}{2}\right)$$

KEY:- BD

SOL:-

For
$$x < L$$

 $i = \frac{B_0 l^v}{R}$
 $mv \frac{dv}{dx} = -\frac{B_0^2 l^2}{R} v \Rightarrow \int_{v_0}^{v} dv = -\frac{B_0^2 l^2}{mR} \int_{0}^{x} dx \Rightarrow v = v_0 - kx$
Also, $\frac{dv}{dt} = -kv \Rightarrow \int_{v_0}^{v} \frac{dv}{v} = -k \int_{0}^{t} dt \Rightarrow v = v_0 e^{-kt} \Rightarrow t = \frac{1}{k} \ln\left(\frac{v_0}{v}\right) = \frac{1}{k} \ln\left(\frac{v_0}{v_0}\right)$

If $v_0 > KL$ loop will fully enter into region of magnetic field after time $t = \frac{1}{k} \ln \left(\frac{v_0}{v_0 - KL} \right)$

and continue to move with velocity $v_0 - KL$

🐯 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

22. Length, breadth and thickness of a strip having a uniform cross section are measured to be 10.5 cm, 0.05 mm, and 6.0 μ m, respectively. Which of the following option(s) give(s) the volume of the strip in cm³ with correct significant figures:

A) 3.2×10^{-5} **B)** 32.0×10^{-6} **C)** 3.0×10^{-5} **D)** 3×10^{-5}

KEY:- D

- **SOL:-** Number of significant figures in result must be equal to number of significant figures in measured value with least number of it, i.e in 0.05 mm which is 1.
- 23. Consider the system of three connected strings, S₁, S₂ and S₃ with uniform linear mass densities μ kg/m, 4μ kg/m and 16μ kg/m, respectively, as shown in the figure.
 S₁ and S₂ are connected at the point P, whereas S₂ and S₃ are connected at the point Q, and the other end of S₃ is connected to a wall. A wave generator O is connected to the free end of S₁. The wave from the generator is represented by y = y₀ cos(ωt kx)cm where y₀, ω and k are constants of appropriate dimensions. Which of the following statements is/are correct:

A) When the wave reflects from *P* for the first time, the reflected wave is represented by $y = \alpha_1 y_0 \cos(\omega t + kx + \pi)$ cm, where α_1 is a positive constant.

B) When the wave transmits through *P* for the first time, the transmitted wave is represented by $y = \alpha_2 y_0 \cos(\omega t - kx)$ cm where α_2 is a positive constant.

C) When the wave reflects from Q for the first time, the reflected wave is represented by $y = \alpha_3 y_0 \cos(\omega t - kx + \pi)$ cm, where α_3 is a positive constant. D) When the wave transmits through Q for the first time, the transmitted wave is represented by $y = \alpha_4 y_0 \cos(\omega t - 4kx)$ cm, where α_4 is a positive constant.

KEY:- AD

SOL:- Wave reflects at P by a denser media, so phase change of π will occur, Transmitted wave will be in phase with incident wave.

👺 Sri Chaitanya IIT Academy

SECTION-III (NUMERICAL VALUE)

This section contains SIX (06) questions.

• The answer to each question is a **NUMERICAL VALUE**.

- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>

 Sull Market A IS ONLY the according to the following marking scheme
- Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases..
- 24. A person sitting inside an elevator performs a weighing experiment with an object of mass 50 kg. Suppose that the variation of the height y (in m) of the elevator, from the

ground, with time t (in s) is given by $y = 8 \left[1 + \sin\left(\frac{2\pi t}{T}\right) \right]$, where $T = 40\pi s$. Taking

acceleration due to gravity, $g = 10 \text{ m/s}^2$, the maximum variation of the object's weight (in N) as observed in the experiment is _____

SOL:-
$$y = 8\left(1 = \sin\frac{t}{20}\right); \ \dot{y} = \frac{8}{20}\cos\left(\frac{t}{20}\right); \ \ddot{y} = -\frac{8}{20^2}\cos\left(\frac{t}{20}\right) \quad W = m\left(g + \ddot{y}\right)$$

 \therefore Maximum variation in $W = 2(50)\left(\frac{8}{20^2}\right) = 2N$

25. A cube of unit volume contains 35×10^7 photons of frequency 10^{15} Hz. If the energy of all the photons is viewed as the average energy being contained in the electromagnetic waves within the same volume, then the amplitude of the magnetic field is $\alpha \times 10^{-9}$ T. Taking permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ Tm / A, Plank's constant $h = 6 \times 10^{-34}$ Js

and
$$\pi = \frac{22}{7}$$
, the value of α is _____

KEY:- 22.97 - 22.98

SOL:
$$\langle u \rangle = \frac{B_0^2}{2\mu_0} \Longrightarrow B_0 = \sqrt{2\mu_0 \langle u \rangle} = \left\{ 2 \times 4\pi \times 10^{-7} \times 35 \times 10^7 \times 6 \times 10^{-34} \times 10^{15} \right\}^{1/2} = 22.978 \times 10^{-9}$$

26. Two identical plates P and Q, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures T_P and T_Q respectively, with $T_Q < T_P$ as shown in Fig.1 The radiated power transferred per unit area from P to Q is W_0 . Subsequently two more plates, identical to P and Q, are introduced between P and Q, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from P to Q (Fig. 2) in the steady state is

$$W_s$$
. Then the ratio $\frac{W_0}{W_s}$ is _____

灩 Sri Chaitanya IIT Academy

0

TQ

Fig. 2

P

Ws

Tp

KEY:- 3

SOL:- $W_0 = \sigma A \left(T_P^4 - T_Q^4 \right)$

$$W_{S} = \sigma \left(T_{P}^{4} - T_{1}^{4}\right) = \sigma \left(T_{1}^{4} - T_{2}^{4}\right) = \sigma \left(T_{2}^{4} - T_{Q}^{4}\right)$$
$$\Rightarrow 3W_{S} = \sigma \left(T_{P}^{4} - T_{Q}^{4}\right) \Rightarrow 3W_{S} = W_{0} \Rightarrow \frac{W_{0}}{W_{S}} = 3$$

27. A solid glass sphere of refractive index $n = \sqrt{3}$ and radius *R* contains a spherical air cavity of radius $\frac{R}{2}$, as shown in the figure. A very thin glass layer is present at the point O so that the air cavity (refractive index n = 1) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source *S* emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point O and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is θ . The value of sin θ is _____

Sri Chaitanya IIT Academy

For the light reflected at point *O* to be fully polarized, it must be incident at Brewster angle $\theta_B = \tan^{-1}(n) = 60^{\circ}$

For refraction at *C* at glass-air interface $r = \langle BCD = 60^{\circ}$ $i = \langle BCE = 30^{\circ}$ $\therefore CE$ is angle bisector of $\langle BCE$ and hence perpendicular to *BD* $\therefore \sin \theta = \frac{AE}{AD} = \frac{3R/4}{R} = \frac{3}{4} = 0.75$

28. A single slit diffraction experiment is performed to determine the slit width using the equation, $\frac{bd}{D} = m\lambda$, where b is the slit width, D the shortest distance between the slit and the screen, d the distance between the m^{th} diffraction maximum and the central maximum, and λ is the wavelength. D and d are measured with scales of least count of 1 cm and 1 mm, respectively. The values of λ and m are known precisely to be 600 nm and 3, respectively. The absolute error (in μ m) in the value of b estimated using the diffraction maximum that occurs for m=3 with d=5 mm and D=1 m is _____

KEY:- 75.6
SOL:-
$$b = m\lambda\left(\frac{D}{d}\right) \Rightarrow \Delta b = m\lambda\left(\frac{d\Delta D + D\Delta d}{d^2}\right)$$

 $\Rightarrow \Delta b = 3 \times 600 \times 10^{-9} \left(\frac{5 \times 10^{-3} \times 10^{-2} + 1 \times 10^{-3}}{25 \times 10^{-6}}\right)$
 $= 75.6 \times 10^{-6} m.$

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

29. Consider an electron in the n = 3 orbit of a hydrogen-like atom with atomic number Z. At absolute temperature T, a neutron having thermal energy $k_B T$ has the same deBroglie wavelength as that of this electron. If this temperature is given by $T = \frac{Z^2 h^2}{a \pi^2 a_0^2 m_N k_B}$,

(where *h* is the Plank's contant, k_B is the Boltzmann constant, m_N is the mass of neutron and a_0 is the first Bohr radius of hydrogen atom) then the value of α is ____

KEY:- 72

🎇 Sri Chaitanya IIT Academy

SOL:- For electron:
$$\lambda = \frac{2\pi r}{n} = \left(\frac{2\pi}{n}\right) \left(\frac{n^2}{Z}a_0\right) = \frac{2\pi n}{Z}a_0$$

For
$$n = 3; \lambda = \frac{6\pi}{z}a_0$$
, For thermal neutrons: $\lambda = \frac{h}{\sqrt{2m_Nk}}$

$$\therefore \frac{h}{\sqrt{2m_Nk_BT}} = \frac{6\pi}{Z}a_0 \Longrightarrow 2m_Nk_BT = \frac{Z^2h^2}{36\pi^2a_0^2} \Longrightarrow T = \frac{Z^2h^2}{72\pi^2a_0^2m_Nk_B}$$

SECTION – IV (MATCHING TYPE)

This section contains THERE (03) Matching List Sets.

• Each set has **ONE** Multiple Choice Question.

• Each set has TWO lists :List-I and List-II.

- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.

• Answer to each question will be evaluated <u>according to the following marking scheme :</u> *Full Marks*:+3 **ONLY** if the option corresponding to the correct combination is chosen; *Zero Marks*: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

30. List-I shows four configurations, each consisting of a pair of ideal electric dipoles. Each dipole has a dipole moment of magnitude p, oriented as marked by arrows in the figures. In all the configurations the dipoles are fixed such that they are at a distance 2r apart along the x direction.

The midpoint of the line joining the two dipoles is X. The possible resultant electric fields \vec{E} at X are given in List-II. Choose the option that describes the correct match between

the entries in List-I to those in List-II.

🐯 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

Page | 31

31. A circuit with an electrical load having impedance Z is connected with an AC source as shown in the diagram. The source voltage varies in time as $V(t) = 300\sin(400t)V$, where t is time in s. List-I shows various options for the load. The possible currents i(t) in the circuit as a function of time are given in List-II.

Choose the option that describes the correct match between the entries in List-I to those in List-II.

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

KEY:- A	
SOL:- (P) $z = R; i = \frac{v}{R} = 10 \sin 400t$	
(Q) $x_L = \omega L = 40\Omega; z =$	$i = \frac{\widetilde{V}}{\widetilde{Z}} = 6\sin\left(400t - 53^\circ\right)$
(R) $X_c = 50\Omega; X_L = 10\Omega; Z = 50\Omega$	$i = \frac{\widetilde{V}}{\widetilde{Z}} = 6\sin\left(400t + 53^\circ\right)$
(S) $X_c = 50\Omega; R = 60\Omega; X_L = 50\Omega; Z$	$= 60\Omega \ i = \frac{\tilde{V}}{Z} = \frac{300}{60} \sin(400t) = 5\sin(400t)$

List-I shows various functional dependencies of energy (E) on the atomic number (Z). 32. Energies associated with certain phenomena are given in List-II. Choose the option that describes the correct match between the entries in List-I to those in List-II.

	List-I		List-II
P)	$E \propto Z^2$	1)	energy of characteristic x-rays
Q)	$E \propto (Z-1)^2$	2)	electrostatic part of the nuclear binding energy for stable nuclei with mass numbers in the range 30 to 170
R)	$E \propto Z(Z-1)$	3)	energy of continuous x-rays
S)	E is practically independent of Z	4)	average nuclear binding energy per nucleon for stable nuclei with mass number in the range 30 to 170
	all a sol	5)	energy of radiation due to electronic transitions from hydrogen-like atoms

A) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 2$ B) $P \rightarrow 5, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 2$ C) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 4$ D) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 2$

KEY:- C

SOL:- (P) $E \propto Z^2$: Energy of radiation due to electronic transition from H – like atoms

- (Q) $E \propto (Z-1)^2$: Energy of K_{∞} characteristic X rays
- (R) $E \propto Z(Z-1)$: Every proton interacts with all remaining protons inside nucleus by

coulomb interaction.

Sri Chaitanya IIT Academy

(S) E_{bn} for nuclei 30 < A < 170 is nearly constant.

Sri Chaitanya IIT Academy

JEE MAIN 2025

100

31

500 4 95

10

TOTAL QUALIFIED RANKS 22,094

KEY:- B

SOL: $2KMnO_4 + KI + H_2O \longrightarrow 2MnO_2 + 2KOH + KIO_3$

 $2MnO_{4}^{-} + I^{-} + H_{2}O \longrightarrow 2MnO_{2} + 2OH^{-} + IO_{3}^{-}$

36. Consider the depicted hydrogen (**H**) in the hydrocarbons given below. The most acidic hydrogen (**H**) is

BELOW **4** 98

1000 4 57.9

Sri Chaitanya IIT Academy 18-05-2025_JEE-Advanced-2025-P1-QP & Sol's SECTION – II (ONE OR MORE CORRECT ANSWER TYPE) This section contains THERE (03) questions. • Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s). • For each question, choose the option(s) corresponding to (all) the correct answer(s). • Answer to each question will be evaluated according to the following marking scheme : Full Marks :+4 ONLY if (all) the correct option(s) is(are) chosen; Partial Marks: +3 If all the four options are correct but ONLY three options are chosen; Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct ; Partial Marks: +1 If two or more options are correct but ONLY two options are chosen, and it is a correct option ; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -2 In all other cases For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks; choosing ONLY (B) and (D) will get +2 marks; choosing ONLY (A) will get +1 mark; choosing ONLY (B) will get +1 mark; choosing ONLY (D) will get +1 mark; choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks. 37. Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the **INCORRECT** statement(s) is(are) **A)** Bond order of Ne_2 is zero. **B**) The highest occupied molecular orbital (HOMO) of F_2 is σ -type. C) Bond energy of O_2^+ is smaller than the bond energy of O_2^- . **D**) Bond length of Li_2 is larger than the bond length of B_2 **KEY:- BC** SOL:- A) Bond order in NO, is zero since number of electrons in bonding and antibonding MOs are same B) HOMO is F_2 is πP_x and πP_y not σ type C) Bond order in O_2^+ is 2.5 but in O_2^- is 2.50 bond energy in O_2^+ is more than O_2^- D) Lithium atom is larger than bond atom so bond length in Li_2 , is greater than B_2 through bond order is same 38. The pair(s) of diamagnetic ions is(are). **D**) Yb^{3+}, Lu^{2+} **A)** La^{3+}, Ce^{4+} **B)** Yb^{2+}, Lu^{3+} **KEY:- AB SOL:-** $La^{3+} \& Ce^{4+}$ have all paired electrons also Yb^{2+} and Lu^{3+} have all paired electrons.

蹘 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

stitutions

 $\therefore x = 2.24$

SECTION-III (NUMERICAL VALUE)

This section contains SIX (06) questions.

- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>

 Sull Market A IS ONLY the according to the following marking scheme
- Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
- 40. In an electrochemical cell, dichromate ions in aqueous acidic medium are reduced to

 Cr^{3+} . The current(in amperes) that flows through the cell for 48.25 minutes to produce 1

mole of Cr^{3+} is _____.

Use: 1 Faraday = 96500 C mol^{-1}

KEY:- 100

SOL:- $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$

Number of moles of electrons required for formation of 1 mole $Cr^{3+} = 3$.

 $\Rightarrow \frac{it}{F} = 3 \qquad \Rightarrow i = \frac{3F}{t} \qquad = \frac{3 \times 96500}{48.25 \times 60} = 100$

- **41.** At 25 °C, the concentration of H^+ ions in $1.00 \times 10^{-3} M$ aqueous solution of a weak monobasic acid having acid dissociation constant (K_a) of 4.00×10^{-11} is $X \times 10^{-7} M$. The
 - value of X is _

Use: Ionic product of water $(K_w) = 1.00 \times 10^{-14}$ at 25 °C

SOL:-
$$HA = H^{+} + A^{-}$$

 $H_{2}O = H^{+} + OH^{-}$ $H^{+} = A^{-} + OH^{-}$
 $H^{+} = \frac{K_{1}C}{H^{+}} + \frac{K_{w}}{H^{+}} \implies [H^{+}] = \sqrt{K_{a}C + K_{w}}$
 $= \sqrt{4 \times 10^{-14} + 10^{-14}} = \sqrt{5} \times 10^{-7} = 2.24 \times 10^{-7}$

Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

Molar volume (V_m) of a van der Waals gas can be calculated by expressing the van der **42.** Waals equation as a cubic equation with V_m as the variable. The ratio (in mol dm⁻³) of the coefficient of V_m^2 to the coefficient of V_m for a gas having van der Waals constants $a = 6.0 \ dm^6 \ atm \ mol^{-2}$ and $b = 0.060 \ dm^3 \ mol^{-1}$ at 300 K and 300 atm is _____. Use: Universal gas constant $(R) = 0.082 \ dm^3 atm^{-1} \ mol^{-1}$ **KEY:- - 7.1 SOL:-** $\left(P + \frac{a}{V_m^2}\right)\left(V_m - b\right) = RT$ $\Rightarrow (PV_m^2 + a)(V_m - b) = RTV_m^2$ $\Rightarrow PV_m^3 - (Pb + RT)V_m^2 + aV_m - ab = 0$ Ratio of coefficient of V_m^2 to V_m $= -\frac{Pb + RT}{a} = -\frac{(300 \times 0.06 + 0.082 \times 300)}{6} = -7.1$ Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is **43**. electrolyzed completely under constant pressure at 300 K is _____. Use: Universal gas constant $(R) = 8.3 J K^{-1} mol^{-1}$; Atomic mass (in amu): H = 1, O = 16**KEY:- - 29.88 SOL:** $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$ 8 moles of water on electrolysis produces 12 moles of gas. $W_{\text{expansion}} = -\Delta n_g \cdot RT = -12RT = -12 \times 8.3 \times 300 \times 10^{-3}$ -29.88*KJ* The monomer (X) involved in the synthesis of Nylon 6,6 gives positive carbylamine test. **44**. If 10moles of X are analyzed using Dumas method, the amount (in grams) of nitrogen gas evolved is _____.

Use: Atomic mass of N (in amu) = 14

🐯 Sri Chaitanya IIT Academy

灪 Sri Chaitanya IIT Academy

18-05-2025_JEE-Advanced-2025-P1-QP & Sol's

SECTION – IV (MATCHING TYPE)

This section contains THERE (03) Matching List Sets.

• Each set has **ONE** Multiple Choice Question.

• Each set has TWO lists :List-I and List-II.

• List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).

• FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.

• Answer to each question will be evaluated <u>according to the following marking scheme :</u> *Full Marks*:+3 **ONLY** if the option corresponding to the correct combination is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

46. The correct match of the group reagents in List-I for precipitating the metal ion given in List-II from solutions, is

	COLUMN-I		COLUMN-II
P)	Passing H_2S in the presence of NH_4OH	1)	<i>Cu</i> ²⁺
Q)	$(NH_4)_2 CO_3$ in the presence of NH_4OH	2)	Al^{3+}
R)	NH_4OH in the presence of NH_4Cl	3)	<i>Mn</i> ²⁺
S)	Passing H_2S in the presence of dilute <i>HCl</i>	4)	Ba^{2+}
		5)	<i>Mg</i> ²⁺
A) P ·	-3; Q-4; R-2; S-1 B) P-4; Q-2	; R – 1	3; S − 1

C)
$$P - 3$$
; $Q - 4$; $R - 1$; $S - 5$ **D**) $P - 5$; $Q - 3$; $R - 2$; $S - 4$

KEY:- A

SOL:- P) H_2S in presence of NH_4OH precipitates $Mn^{2+}(3)MnS$

- Q) $(NH_4)_2 CO_3$ in the presence of NH_4OH precipitates Ba^{2+} as $BaCO_3(4)$
- R) NH_4OH in the presence of NH_4Cl precipitates $Al^{3+}(2)$ as $Al(OH)_3$
- S) H_2S in the presence of *HCl* precipitates $Cu^{2+}(1)$ as *CuS*
- **47.** The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.

500 < 95

100 4 31

BELOW ◀ 10

100 < 98

1000 4 57.9

TOTAL QUALIFIED RANKS 22,094

correct option.COLUMN-ICOLUMN-IIP) $\bigwedge_{H_2} + \bigcap_{G} $	8.	Match the compounds in List-I with	th the	e appropriate observations in List-II and choose t
COLUMN-I COLUMN-I P) $\bigwedge_{H_2} + \bigcap_{G} + \bigcap_{OMe}$ 1) Reaction with phenyl diazonium salt gives yellow dye. Q) $\bigcap_{G} + \bigcap_{H} + \bigcap_{G} + \bigcap_{OMe}$ 2) Reaction with ninhydrin gives purple color a it also reacts with FeCl ₃ to give violet color. R) $\bigcap_{G} + \bigcap_{H} + \bigcap_{H} + \bigcap_{OMe}$ 3) Reaction with glucose will give correspondin hydrazone. S) $\bigvee_{H} + \bigcap_{H} + \bigcap_{H} + \bigcap_{OMe}$ 4) Lassiagne extract of the compound treated w dilute HCl followed by addition of aqueous FeCl ₃ gives blood red color. S) $\bigwedge_{H} + \bigcap_{H} + $		correct option.		
 P) NH₂ O P P P P P P P P P P P P P P P P P P		COLUMN-I		COLUMN-II
 Q) Q) Q) Q) Q) Reaction with ninhydrin gives purple color a it also reacts with FeCl₃ to give violet color. R) Q) R) Q) Reaction with glucose will give correspondin hydrazone. S) Q) NHNH₂ A) P-1; Q-5; R-4; S-2 P) P-2; Q-5; R-1; S-3 	P)	HO NH2 H O NOMe	1)	Reaction with phenyl diazonium salt gives yellow dye.
 R) NH₃⁺Cl⁻ 3) Reaction with glucose will give corresponding hydrazone. S) NHNH₂ 4) Lassiagne extract of the compound treated will dilute HCl followed by addition of aqueous FeCl₃ gives blood red color. 5) After complete hydrolysis, it will give ninhydrin test and it DOES NOT give positive phthalein dye test. A) P - 1; Q - 5; R - 4; S - 2 B) P - 2; Q - 5; R - 1; S - 3 	Q)		2)	Reaction with ninhydrin gives purple color and it also reacts with FeCl ₃ to give violet color.
 S) NHNH₂ A) Lassiagne extract of the compound treated w dilute HCl followed by addition of aqueous FeCl₃ gives blood red color. 5) After complete hydrolysis, it will give ninhydrin test and it DOES NOT give positiv phthalein dye test. A) P - 1; Q - 5; R - 4; S - 2 B) P - 2; Q - 5; R - 1; S - 3 	R)	NH3 ⁺ Cl ⁻	3)	Reaction with glucose will give corresponding hydrazone.
5)After complete hydrolysis, it will give ninhydrin test and it DOES NOT give positiv phthalein dye test.A) P - 1; Q - 5; R - 4; S - 2B) P - 2; Q - 5; R - 1; S - 3	S)	NHNH ₂	4)	Lassiagne extract of the compound treated with dilute HCl followed by addition of aqueous FeCl ₃ gives blood red color.
A) $P - 1; Q - 5; R - 4; S - 2$ B) $P - 2; Q - 5; R - 1; S - 3$			5)	After complete hydrolysis, it will give ninhydrin test and it DOES NOT give positive phthalein dye test.
		A) P – 1; Q – 5; R – 4; S – 2	1	B) $P - 2; Q - 5; R - 1; S - 3$

SOL:- P) It is a derivative of amino acid and hence gives ninhydrin test and it has a phenolic group it gives +ve *FeCl*₃test.

Q) It is an amino acid derivative. On hydrolysis it gives amino acids which give ninhydrin test and there is no phenol produced on hydrolysis, hence it does not give phthalein dye test

R)

S) It is a hydrazine and hence gives hydrazone with glucose.

Sri Chaitanya Dominates **JEE MAIN 2025**

31 Students Below 100 AIR

🚯 💿 💿 👘